IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921009577.html
   My bibliography  Save this article

Camouflage strategy of a Stackelberg game based on evolution rules

Author

Listed:
  • Chaoqi, Fu
  • Pengtao, Zhang
  • Lin, Zhou
  • Yangjun, Gao
  • Na, Du

Abstract

The importance of critical infrastructure makes it a target of attacks in the new era. Using the Stackelberg game model, we analyze the offensive and defensive security issues of critical infrastructure from a network perspective. Considering the impact of cascading failure, nodes are divided into two categories according to the cost-efficiency ratio. High cost-efficiency (HCE) nodes are the initial protection nodes, and each initial protection node sets up an agent to manage the defense resources. The defense resources can achieve two effects: protection and camouflage. Complete defense can avoid failure after being attacked. Partial defenses can avoid the attacker's attack by camouflage, and the effect of camouflage is related to the amount of defense resources. We propose an evolution model to realize the optimal allocation of resources through the evolutionary game of the agents, and analyze the influence of three parameters on evolution. The results show that the initial willingness of the agent will affect the result of evolution only when it is small. If the willingness exceeds a critical value, the result of evolution is only affected by the penalty coefficient and camouflage coefficient. To optimize the overall defense effect, the penalty coefficient and camouflage coefficient must cooperate, which is explained by the causal relationship between the agent's behavior and decisions.

Suggested Citation

  • Chaoqi, Fu & Pengtao, Zhang & Lin, Zhou & Yangjun, Gao & Na, Du, 2021. "Camouflage strategy of a Stackelberg game based on evolution rules," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921009577
    DOI: 10.1016/j.chaos.2021.111603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerald G. Brown & Louis Anthony (Tony) Cox, Jr., 2011. "How Probabilistic Risk Assessment Can Mislead Terrorism Risk Analysts," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 196-204, February.
    2. Estrada, Mario Arturo Ruiz & Park, Donghyun & Kim, Jung Suk & Khan, Alam, 2015. "The economic impact of terrorism: A new model and its application to Pakistan," Journal of Policy Modeling, Elsevier, vol. 37(6), pages 1065-1080.
    3. Johannes Ulrich Siebert & Detlof von Winterfeldt, 2020. "Comparative Analysis of Terrorists’ Objectives Hierarchies," Decision Analysis, INFORMS, vol. 17(2), pages 97-114, June.
    4. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Barry Charles Ezell & Steven P. Bennett & Detlof Von Winterfeldt & John Sokolowski & Andrew J. Collins, 2010. "Probabilistic Risk Analysis and Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 575-589, April.
    6. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    7. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2019. "Author Correction: Universal resilience patterns in complex networks," Nature, Nature, vol. 568(7751), pages 5-5, April.
    8. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    9. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    12. Zhong, Jilong & Sanhedrai, Hillel & Zhang, FengMing & Yang, Yi & Guo, Shu & Yang, Shunkun & Li, Daqing, 2020. "Network endurance against cascading overload failure," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    13. Nageswara S. V. Rao & Stephen W. Poole & Chris Y. T. Ma & Fei He & Jun Zhuang & David K. Y. Yau, 2016. "Defense of Cyber Infrastructures Against Cyber‐Physical Attacks Using Game‐Theoretic Models," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 694-710, April.
    14. Alcaraz, Cristina & Zeadally, Sherali, 2015. "Critical infrastructure protection: Requirements and challenges for the 21st century," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 53-66.
    15. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    16. Wu, Di & Yan, Xiangbin & Peng, Rui & Wu, Shaomin, 2020. "Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    17. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    18. Wang, Jianwei & Rong, Lili & Zhang, Liang & Zhang, Zhongzhi, 2008. "Attack vulnerability of scale-free networks due to cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6671-6678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    2. Jiaqi Ren & Jin Liu & Yibo Dong & Zhe Li & Weili Li, 2024. "NIGA: A Novel Method for Investigating the Attacker–Defender Model within Critical Infrastructure Networks," Mathematics, MDPI, vol. 12(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    3. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    4. Han, Lin & Zhao, Xudong & Chen, Zhilong & Wu, Yipeng & Su, Xiaochao & Zhang, Ning, 2021. "Optimal allocation of defensive resources to defend urban power networks against different types of attackers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    5. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    8. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Jiaqi Ren & Jin Liu & Yibo Dong & Zhe Li & Weili Li, 2024. "NIGA: A Novel Method for Investigating the Attacker–Defender Model within Critical Infrastructure Networks," Mathematics, MDPI, vol. 12(16), pages 1-24, August.
    12. Wang, Jian & Cui, Lei, 2023. "Patrolling games with coordination between monitoring devices and patrols," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    14. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    15. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    16. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    17. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    18. Edouard Kujawski, 2016. "A Probabilistic Game‐Theoretic Method to Assess Deterrence and Defense Benefits of Security Systems," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 549-566, November.
    19. L. Elbakidze & Y. H. Jin, 2015. "Are Economic Development and Education Improvement Associated with Participation in Transnational Terrorism?," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1520-1535, August.
    20. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921009577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.