IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v25y1979i8p777-786.html
   My bibliography  Save this article

The Power Approximation for Computing (s, S) Inventory Policies

Author

Listed:
  • Richard Ehrhardt

    (University of North Carolina at Chapel Hill)

Abstract

In this paper we present a new analytic approximation for computing (s, S) policies for single items under periodic review with a set-up cost, linear holding and shortage costs, fixed replenishment lead time, and backlogging of unfilled demand. The approximation formulae are derived by using existing results of asymptotic renewal theory to characterize the behavior of the optimal policy numbers as functions of the model parameters. These functions are then used to construct regressions with coefficients that are calibrated by using a grid of 288 known optimal policies as data. The resulting Power Approximation policies (formulae) are easy to compute and. require for demand information only the mean and variance of demand over lead time. Extensive computational results show that the approximations yield expected total costs that typically are well within one percent of optimal. The approximation's robustness is exemplified by analyzing its performance when statistical estimates are used in place of the actual mean and variance of demand.

Suggested Citation

  • Richard Ehrhardt, 1979. "The Power Approximation for Computing (s, S) Inventory Policies," Management Science, INFORMS, vol. 25(8), pages 777-786, August.
  • Handle: RePEc:inm:ormnsc:v:25:y:1979:i:8:p:777-786
    DOI: 10.1287/mnsc.25.8.777
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.25.8.777
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.25.8.777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    inventory/production: approximations;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:25:y:1979:i:8:p:777-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.