IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i3p1179-1191.html
   My bibliography  Save this article

A comparison of chance-constrained data envelopment analysis, stochastic nonparametric envelopment of data and bootstrap method: A case study of cultural regeneration performance of cities

Author

Listed:
  • Lin, Sheng-Wei
  • Lu, Wen-Min

Abstract

This study comprehensively compares three efficiency measurement methods—chance-constrained data envelopment analysis (CCDEA), stochastic nonparametric envelopment of data (StoNED), and the bootstrap method—in the context of the cultural regeneration performance of cities. The research examines these methods’ methodological differences, advantages, and disadvantages with a focus on uncertainty handling, production function assumptions, and computational requirements. The analysis reveals that CCDEA and the bootstrap method yield similar efficiency scores, while StoNED tends to produce lower efficiency scores. Furthermore, regions exhibit higher value-creation efficiency of cultural and creative industry than operational management efficiency, thus highlighting the untapped potential for improving value creation in cultural regeneration projects. This comprehensive comparison enables researchers and practitioners to further understand the nuances among these methods and select the most suitable method for their specific needs and objectives when evaluating the performance of cultural regeneration projects or other applications.

Suggested Citation

  • Lin, Sheng-Wei & Lu, Wen-Min, 2024. "A comparison of chance-constrained data envelopment analysis, stochastic nonparametric envelopment of data and bootstrap method: A case study of cultural regeneration performance of cities," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1179-1191.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:1179-1191
    DOI: 10.1016/j.ejor.2024.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724002133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Tsionas, Mike G., 2023. "Joint production in stochastic non-parametric envelopment of data with firm-specific directions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1336-1347.
    3. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    4. Michali, Maria & Emrouznejad, Ali & Dehnokhalaji, Akram & Clegg, Ben, 2023. "Subsampling bootstrap in network DEA," European Journal of Operational Research, Elsevier, vol. 305(2), pages 766-780.
    5. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Kuosmanen, Timo & Saastamoinen, Antti & Sipiläinen, Timo, 2013. "What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods," Energy Policy, Elsevier, vol. 61(C), pages 740-750.
    8. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    10. Hadi Moheb-Alizadeh & Robert Handfield, 2018. "An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(21), pages 6890-6916, November.
    11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    12. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    13. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    14. Mohamed Dia & Pawoumodom M. Takouda & Amirmohsen Golmohammadi, 2022. "Assessing the performance of Canadian credit unions using a three-stage network bootstrap DEA," Annals of Operations Research, Springer, vol. 311(2), pages 641-673, April.
    15. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    16. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    17. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    18. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    19. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    20. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    21. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    22. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    23. Yu, Anyu & Zhang, Puwei & Rudkin, Simon, 2022. "Simultaneous action or protection after production? Decision making based on a chance-constrained approach by measuring environmental performance considering PM2.5," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    24. Lin, Sheng-Hau & Huang, Xianjin & Fu, Guole & Chen, Jia-Tsong & Zhao, Xiaofeng & Li, Jia-Hsuan & Tzeng, Gwo-Hshiung, 2021. "Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making," Land Use Policy, Elsevier, vol. 108(C).
    25. Zhen Su & Joshua R. Aaron & William C. McDowell & Dan Dan Lu, 2019. "Sustainable Synergies between the Cultural and Tourism Industries: An Efficiency Evaluation Perspective," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    26. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    27. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    28. Van Puyenbroeck, Tom & Montalto, Valentina & Saisana, Michaela, 2021. "Benchmarking culture in Europe: A data envelopment analysis approach to identify city-specific strengths," European Journal of Operational Research, Elsevier, vol. 288(2), pages 584-597.
    29. Majid Azadi & Zohreh Moghaddas & Reza Farzipoor Saen & Angappa Gunasekaran & Sachin Kumar Mangla & Alessio Ishizaka, 2023. "Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 107-150, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Arévalo S & Víctor Giménez G & Diego Prior J, 2022. "Análisis de eficiencia en educación: una aplicación del método StoNED," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 92(2), pages 45-91, October.
    2. Maria Nieswand & Stefan Seifert, 2016. "Operational Conditions in Regulatory Benchmarking Models: A Monte Carlo Analysis," Discussion Papers of DIW Berlin 1585, DIW Berlin, German Institute for Economic Research.
    3. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    4. Nguyen, Trang T.T. & Prior, Diego & Van Hemmen, Stefan, 2020. "Stochastic semi-nonparametric frontier approach for tax administration efficiency measure: Evidence from a cross-country study," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 137-153.
    5. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    6. Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.
    7. Liu, Fangmei & Li, Li & Ye, Bin & Qin, Quande, 2023. "A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency," Energy Economics, Elsevier, vol. 119(C).
    8. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    9. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    10. Maziotis, Alexandros & Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Molinos-Senante, Maria, 2023. "Cost and quality of service performance in the Chilean water industry: A comparison of stochastic approaches," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 211-219.
    11. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    12. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    13. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    14. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    15. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    16. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
    17. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    18. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    19. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    20. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:1179-1191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.