IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i2p733-745.html
   My bibliography  Save this article

Detecting individual preferences and erroneous verdicts in mixed martial arts judging using Bayesian hierarchical models

Author

Listed:
  • Holmes, Benjamin
  • McHale, Ian G.
  • Żychaluk, Kamila

Abstract

In this paper, we use Bayesian hierarchical models to investigate the decision-making of judges of mixed martial arts (MMA) contests. Whilst there has been research into the judging of various sports in the past, none have explicitly modelled the judges’ behaviours at an individual level. We progress the literature by demonstrating that judges have personal preferences towards the different actions that they must assess during a fight. The preferences themselves may be the deciding factor in a bout, as demonstrated using a historical case study. We apply the concept of variable significance to the predictions of scores, to assess whether a judge’s verdict was within reason. Finally, we develop a model that predicts a bout’s fair outcome, which could be used in various ways in MMA.

Suggested Citation

  • Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2024. "Detecting individual preferences and erroneous verdicts in mixed martial arts judging using Bayesian hierarchical models," European Journal of Operational Research, Elsevier, vol. 312(2), pages 733-745.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:733-745
    DOI: 10.1016/j.ejor.2023.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    2. Frederiksen, Jesper S. & Machol, Robert E., 1988. "Reduction of paradoxes in subjectively judged competitions," European Journal of Operational Research, Elsevier, vol. 35(1), pages 16-29, April.
    3. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stuart Baumann & Carl Singleton, 2024. "They were robbed! Scoring by the middlemost to attenuate biased judging in boxing," Papers 2402.06594, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    2. Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021. "How weather affects the decomposition of total factor productivity in U.S. agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
    3. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
    4. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    5. Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    6. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    7. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    8. Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
    9. Gregory Benton & Wesley J. Maddox & Andrew Gordon Wilson, 2022. "Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes," Papers 2207.06544, arXiv.org.
    10. Juho Kettunen & Lauri Mehtätalo & Eeva‐Stiina Tuittila & Aino Korrensalo & Jarno Vanhatalo, 2024. "Joint species distribution modeling with competition for space," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    11. Pedro Luis do N. Silva & Fernando Antônio da S. Moura, 2022. "Fitting multivariate multilevel models under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1663-1678, October.
    12. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    13. Madar, Vered, 2015. "Direct formulation to Cholesky decomposition of a general nonsingular correlation matrix," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 142-147.
    14. Arif Yüce & Sevda Gökce Yüce & Hakan Katırcı & Volkan Aydoğdu & Weisheng Chiu & Mark D. Griffiths, 2023. "The Effect of the COVID-19 Pandemic on Sports Betting Tipsters as Professional Bettors: A Qualitative Interview Study," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    15. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    16. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
    17. William Bednar & Nick Pretnar, 2019. "Home Production with Time to Consume," 2019 Meeting Papers 328, Society for Economic Dynamics.
    18. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    19. Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
    20. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:733-745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.