IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i2p684-699.html
   My bibliography  Save this article

Estimating production functions through additive models based on regression splines

Author

Listed:
  • España, Victor J.
  • Aparicio, Juan
  • Barber, Xavier
  • Esteve, Miriam

Abstract

This paper introduces a new methodology for the estimation of production functions satisfying some classical production theory axioms, such as monotonicity and concavity, which is based upon the adaptation of an additive version of the machine learning technique known as Multivariate Adaptive Regression Splines (MARS). The new approach shares the piece-wise linear shape of the estimator associated with Data Envelopment Analysis (DEA). However, the new technique is able to surmount the overfitting problems associated with DEA by resorting to generalized cross-validation. In this paper, a computational experience was employed to measure how well the new approach performs, showing that it can reduce the mean squared error and bias of the estimator of the true production function in comparison with DEA and the more recent Corrected Concave Non-Parametric Least Squares (C2NLS) methodology. We also show that the success of the new approach depends on whether or not interactions among variables prevail and the degree of non-additivity of the true production function to be estimated.

Suggested Citation

  • España, Victor J. & Aparicio, Juan & Barber, Xavier & Esteve, Miriam, 2024. "Estimating production functions through additive models based on regression splines," European Journal of Operational Research, Elsevier, vol. 312(2), pages 684-699.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:684-699
    DOI: 10.1016/j.ejor.2023.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Elcin Koc & Cem Iyigun, 2014. "Restructuring forward step of MARS algorithm using a new knot selection procedure based on a mapping approach," Journal of Global Optimization, Springer, vol. 60(1), pages 79-102, September.
    3. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    4. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. Vidoli, Francesco, 2011. "Evaluating the water sector in Italy through a two stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines," European Journal of Operational Research, Elsevier, vol. 212(3), pages 583-595, August.
    7. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    8. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    9. Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
    10. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    11. Daouia, Abdelaati & Noh, Hohsuk & Park, Byeong U., 2016. "Data envelope fitting with constrained polynomial splines," LIDAM Reprints ISBA 2016011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    13. Sergey Bakin & Markus Hegland & Michael R. Osborne, 2000. "Parallel MARS Algorithm Based on B-splines," Computational Statistics, Springer, vol. 15(4), pages 463-484, December.
    14. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    15. Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
    16. Christophe Croux & Irène Gijbels & Ilaria Prosdocimi, 2012. "Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models," Biometrics, The International Biometric Society, vol. 68(1), pages 31-44, March.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Yining Chen & Richard J. Samworth, 2016. "Generalized additive and index models with shape constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 729-754, September.
    19. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. Mary C. Meyer, 2013. "Semi-parametric additive constrained regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(3), pages 715-730, September.
    22. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    23. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    24. Olesen, O.B. & Ruggiero, J., 2022. "The hinging hyperplanes: An alternative nonparametric representation of a production function," European Journal of Operational Research, Elsevier, vol. 296(1), pages 254-266.
    25. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    2. Moragues, Raul & Aparicio, Juan & Esteve, Miriam, 2023. "An unsupervised learning-based generalization of Data Envelopment Analysis," Operations Research Perspectives, Elsevier, vol. 11(C).
    3. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
    4. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    5. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    6. Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
    7. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    8. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    9. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    10. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    11. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    12. Gounopoulos, Dimitrios & Kallias, Konstantinos & Newton, David & Tzeremes, Nickolaos, 2016. "Political connections and IPO underpricing: An efficiency problem," MPRA Paper 69427, University Library of Munich, Germany.
    13. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    14. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    15. Manuel Salas-Velasco, 2020. "Measuring and explaining the production efficiency of Spanish universities using a non-parametric approach and a bootstrapped-truncated regression," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 825-846, February.
    16. Ghulam, Yaseen & Jaffry, Shabbar, 2015. "Efficiency and productivity of the cement industry: Pakistani experience of deregulation and privatisation," Omega, Elsevier, vol. 54(C), pages 101-115.
    17. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    18. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    19. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    20. Michael Zschille & Matthias Walter, 2012. "The performance of German water utilities: a (semi)-parametric analysis," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3749-3764, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:684-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.