IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i1p92-116.html
   My bibliography  Save this article

A multi-objective mixed integer linear programming model for thesis defence scheduling

Author

Listed:
  • Almeida, João
  • Santos, Daniel
  • Figueira, José Rui
  • Francisco, Alexandre P.

Abstract

In this paper, we address the thesis defence scheduling problem, a critical academic scheduling management process, which has been overshadowed in the literature by its counterparts, course timetabling and exam scheduling. Specifically, we address the single defence assignment type of thesis defence scheduling problems, where each committee is assigned to a single defence, scheduled for a specific day, hour and room. We formulate a multi-objective mixed-integer linear programming model, which aims to be applicable to a broader set of cases than other single defence assignment models present in the literature, which have a focus on the characteristics of their universities. For such a purpose, we introduce a different decision variable, propose constraint formulations that are not regulation and policy specific, and cover and offer new takes on the more common objectives seen in the literature. We also include new objective functions based on our experience with the problem at our university and by applying knowledge from other academic scheduling problems. We also propose a two-stage solution approach. The first stage is employed to find the number of schedulable defences, enabling the optimisation of instances with unschedulable defences. The second stage is an implementation of the augmented ϵ-constraint method, which allows for the search of a set of different and non-dominated solutions while skipping redundant iterations. The methodology is tested for case-studies from our university, significantly outperforming the solutions found by human schedulers. A novel instance generator for thesis scheduling problems is presented. Its main benefit is the generation of the availability of committee members and rooms in availability and unavailability blocks, resembling their real-world counterparts. A set of 96 randomly generated instances of varying sizes is solved and analysed regarding their relative computational performance, the number of schedulable defences and the distribution of the considered types of iterations. The proposed method can find the optimal number of schedulable defences and present non-dominated solutions within the set time limits for every tested instance.

Suggested Citation

  • Almeida, João & Santos, Daniel & Figueira, José Rui & Francisco, Alexandre P., 2024. "A multi-objective mixed integer linear programming model for thesis defence scheduling," European Journal of Operational Research, Elsevier, vol. 312(1), pages 92-116.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:1:p:92-116
    DOI: 10.1016/j.ejor.2023.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Battistutta & Sara Ceschia & Fabio De Cesco & Luca Di Gaspero & Andrea Schaerf, 2019. "Modelling and solving the thesis defense timetabling problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1039-1050, July.
    2. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    3. Goh, Say Leng & Kendall, Graham & Sabar, Nasser R., 2017. "Improved local search approaches to solve the post enrolment course timetabling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 17-29.
    4. Gülcü, Ayla & Akkan, Can, 2020. "Robust university course timetabling problem subject to single and multiple disruptions," European Journal of Operational Research, Elsevier, vol. 283(2), pages 630-646.
    5. Amiri, Mosleh & Farvaresh, Hamid, 2023. "Carrier collaboration with the simultaneous presence of transferable and non-transferable utilities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 596-617.
    6. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    7. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef & Qian, Yaguan & Allaoui, Hamid, 2023. "Modelling and analysis of online ride-sharing platforms – A sustainability perspective," European Journal of Operational Research, Elsevier, vol. 304(2), pages 577-595.
    8. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    9. Koziel, Slawomir & Pietrenko-Dabrowska, Anna, 2022. "Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation," European Journal of Operational Research, Elsevier, vol. 299(1), pages 302-312.
    10. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    2. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    3. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    4. Zhang, Ruijuan & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A cooperative vehicle routing problem with delivery options for simultaneous pickup and delivery services in rural areas," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    5. Schmidt, Adam & Albert, Laura A. & Zheng, Kaiyue, 2021. "Risk management for cyber-infrastructure protection: A bi-objective integer programming approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    7. Chenhua Xu & Wenjie Zhang & Dan Liu & Jian Cen & Jianbin Xiong & Guojuan Luo, 2024. "Multi-Objective Optimization of Cell Voltage Based on a Comprehensive Index Evaluation Model in the Aluminum Electrolysis Process," Mathematics, MDPI, vol. 12(8), pages 1-16, April.
    8. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    9. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    10. Say Leng Goh & Graham Kendall & Nasser R. Sabar & Salwani Abdullah, 2020. "An effective hybrid local search approach for the post enrolment course timetabling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1131-1163, December.
    11. Zhong, Jia & Yu, T. Edward & Clark, Christopher D. & English, Burton C. & Larson, James A. & Cheng, Chu-Lin, 2018. "Effect of land use change for bioenergy production on feedstock cost and water quality," Applied Energy, Elsevier, vol. 210(C), pages 580-590.
    12. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    13. Majid Askarifard & Hamidreza Abbasianjahromi & Mehran Sepehri & Ehsanollah Zeighami, 2021. "A robust multi-objective optimization model for project scheduling considering risk and sustainable development criteria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11494-11524, August.
    14. Mavrotas, George & Gakis, Nikos & Skoulaxinou, Sotiria & Katsouros, Vassilis & Georgopoulou, Elena, 2015. "Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1205-1222.
    15. Orhan, Cosku Can & Goez, Julio Cesar & Guajardo, Mario & Osicka, Ondrej & Wallace, Stein W., 2024. "Assessing macro effects of freight consolidation on the livability of small cities using vehicle routing as micro models: The case of Bergen, Norway," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    16. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    17. Can Akkan & Ayla Gülcü & Zeki Kuş, 2022. "Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation," Journal of Scheduling, Springer, vol. 25(4), pages 477-501, August.
    18. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    19. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    20. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:1:p:92-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.