IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i1p92-116.html
   My bibliography  Save this article

A multi-objective mixed integer linear programming model for thesis defence scheduling

Author

Listed:
  • Almeida, João
  • Santos, Daniel
  • Figueira, José Rui
  • Francisco, Alexandre P.

Abstract

In this paper, we address the thesis defence scheduling problem, a critical academic scheduling management process, which has been overshadowed in the literature by its counterparts, course timetabling and exam scheduling. Specifically, we address the single defence assignment type of thesis defence scheduling problems, where each committee is assigned to a single defence, scheduled for a specific day, hour and room. We formulate a multi-objective mixed-integer linear programming model, which aims to be applicable to a broader set of cases than other single defence assignment models present in the literature, which have a focus on the characteristics of their universities. For such a purpose, we introduce a different decision variable, propose constraint formulations that are not regulation and policy specific, and cover and offer new takes on the more common objectives seen in the literature. We also include new objective functions based on our experience with the problem at our university and by applying knowledge from other academic scheduling problems. We also propose a two-stage solution approach. The first stage is employed to find the number of schedulable defences, enabling the optimisation of instances with unschedulable defences. The second stage is an implementation of the augmented ϵ-constraint method, which allows for the search of a set of different and non-dominated solutions while skipping redundant iterations. The methodology is tested for case-studies from our university, significantly outperforming the solutions found by human schedulers. A novel instance generator for thesis scheduling problems is presented. Its main benefit is the generation of the availability of committee members and rooms in availability and unavailability blocks, resembling their real-world counterparts. A set of 96 randomly generated instances of varying sizes is solved and analysed regarding their relative computational performance, the number of schedulable defences and the distribution of the considered types of iterations. The proposed method can find the optimal number of schedulable defences and present non-dominated solutions within the set time limits for every tested instance.

Suggested Citation

  • Almeida, João & Santos, Daniel & Figueira, José Rui & Francisco, Alexandre P., 2024. "A multi-objective mixed integer linear programming model for thesis defence scheduling," European Journal of Operational Research, Elsevier, vol. 312(1), pages 92-116.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:1:p:92-116
    DOI: 10.1016/j.ejor.2023.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Battistutta & Sara Ceschia & Fabio De Cesco & Luca Di Gaspero & Andrea Schaerf, 2019. "Modelling and solving the thesis defense timetabling problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1039-1050, July.
    2. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    3. Goh, Say Leng & Kendall, Graham & Sabar, Nasser R., 2017. "Improved local search approaches to solve the post enrolment course timetabling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 17-29.
    4. Amiri, Mosleh & Farvaresh, Hamid, 2023. "Carrier collaboration with the simultaneous presence of transferable and non-transferable utilities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 596-617.
    5. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    6. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    7. Koziel, Slawomir & Pietrenko-Dabrowska, Anna, 2022. "Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation," European Journal of Operational Research, Elsevier, vol. 299(1), pages 302-312.
    8. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    9. Gülcü, Ayla & Akkan, Can, 2020. "Robust university course timetabling problem subject to single and multiple disruptions," European Journal of Operational Research, Elsevier, vol. 283(2), pages 630-646.
    10. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef & Qian, Yaguan & Allaoui, Hamid, 2023. "Modelling and analysis of online ride-sharing platforms – A sustainability perspective," European Journal of Operational Research, Elsevier, vol. 304(2), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    2. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    3. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    4. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    5. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2022. "Introducing UniCorT: an iterative university course timetabling tool with MaxSAT," Journal of Scheduling, Springer, vol. 25(4), pages 371-390, August.
    6. Jie Yang & Zeyu Wang & Chunming Xu & Di Wang, 2024. "The Competition Between Taxi Services and On-Demand Ride-Sharing Services: A Service Quality Perspective," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    7. H. Khorshidian & M. Akbarpour Shirazi & S. M. T. Fatemi Ghomi, 2019. "An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 163-184, January.
    8. Liu, Xiao & Li, Ming-Yang, 2024. "Sustainable service product design method: Focus on customer demands and triple bottom line," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    9. Saeedeh Anvari & Metin Turkay, 2017. "The facility location problem from the perspective of triple bottom line accounting of sustainability," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6266-6287, November.
    10. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    11. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    12. Lu, X. & Blanton, H. & Gifford, T. & Tucker, A. & Olderman, N., 2021. "Optimized guidance for building fires considering occupants’ route choices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    13. Zhang, Ruijuan & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A cooperative vehicle routing problem with delivery options for simultaneous pickup and delivery services in rural areas," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    14. Schmidt, Adam & Albert, Laura A. & Zheng, Kaiyue, 2021. "Risk management for cyber-infrastructure protection: A bi-objective integer programming approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    16. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    17. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    18. Zhong, Jia & Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno, James, 2016. "Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production," Energy, Elsevier, vol. 107(C), pages 791-803.
    19. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    20. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:1:p:92-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.