IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v311y2023i2p769-776.html
   My bibliography  Save this article

Optimal patrolling strategies for trees and complete networks

Author

Listed:
  • Bui, Thuy
  • Lidbetter, Thomas

Abstract

We present solutions to a continuous patrolling game played on network. In this zero-sum game, an Attacker chooses a time and place to attack a network for a fixed amount of time. A Patroller patrols the network with the aim of intercepting the attack with maximum probability. Our main result is the proof of a recent conjecture on the optimal patrolling strategy for trees. The conjecture asserts that a particular patrolling strategy called the E-patrolling strategy is optimal for all tree networks. The conjecture was previously known to be true in a limited class of special cases. The E-patrolling strategy has the advantage of being straightforward to calculate and implement. We prove the conjecture by presenting ε-optimal strategies for the Attacker which provide upper bounds for the value of the game that come arbitrarily close to the lower bound provided by the E-patrolling strategy. We also solve the patrolling game in some cases for complete networks.

Suggested Citation

  • Bui, Thuy & Lidbetter, Thomas, 2023. "Optimal patrolling strategies for trees and complete networks," European Journal of Operational Research, Elsevier, vol. 311(2), pages 769-776.
  • Handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:769-776
    DOI: 10.1016/j.ejor.2023.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723004186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steve Alpern & Thomas Lidbetter, 2013. "Mining Coal or Finding Terrorists: The Expanding Search Paradigm," Operations Research, INFORMS, vol. 61(2), pages 265-279, April.
    2. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    3. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    4. Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
    5. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    6. Steve Alpern & Thomas Lidbetter, 2014. "Searching a Variable Speed Network," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 697-711, August.
    7. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2018. "Urban rail patrolling: a game theoretic approach," Journal of Transportation Security, Springer, vol. 11(1), pages 23-40, June.
    8. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alpern, Steve & Lidbetter, Thomas, 2020. "Search and Delivery Man Problems: When are depth-first paths optimal?," European Journal of Operational Research, Elsevier, vol. 285(3), pages 965-976.
    2. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    3. Steve Alpern & Thomas Lidbetter, 2019. "Approximate solutions for expanding search games on general networks," Annals of Operations Research, Springer, vol. 275(2), pages 259-279, April.
    4. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    5. Lidbetter, Thomas, 2017. "On the approximation ratio of the Random Chinese Postman Tour for network search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 782-788.
    6. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    7. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    8. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    9. Hellerstein, Lisa & Lidbetter, Thomas, 2023. "A game theoretic approach to a problem in polymatroid maximization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 979-988.
    10. Felix Happach & Lisa Hellerstein & Thomas Lidbetter, 2022. "A General Framework for Approximating Min Sum Ordering Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1437-1452, May.
    11. Alpern, Steve & Fokkink, Robbert & Simanjuntak, Martin, 2016. "Optimal search and ambush for a hider who can escape the search region," European Journal of Operational Research, Elsevier, vol. 251(3), pages 707-714.
    12. Baston, Vic & Kikuta, Kensaku, 2019. "A search problem on a bipartite network," European Journal of Operational Research, Elsevier, vol. 277(1), pages 227-237.
    13. Deutsch, Yael, 2021. "A polynomial-time method to compute all Nash equilibria solutions of a general two-person inspection game," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1036-1052.
    14. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    15. Robbert Fokkink & Ken Kikuta & David Ramsey, 2017. "The search value of a set," Annals of Operations Research, Springer, vol. 256(1), pages 63-73, September.
    16. Steve Alpern & Thomas Lidbetter, 2014. "Searching a Variable Speed Network," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 697-711, August.
    17. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    18. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    19. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    20. Vic Baston & Kensaku Kikuta, 2015. "Search games on a network with travelling and search costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 347-365, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:769-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.