IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p1032-1041.html
   My bibliography  Save this article

Structured learning based heuristics to solve the single machine scheduling problem with release times and sum of completion times

Author

Listed:
  • Parmentier, Axel
  • T’Kindt, Vincent

Abstract

In this paper, we focus on the solution of a hard single machine scheduling problem by new heuristic algorithms embedding techniques from machine learning and scheduling theory. These heuristics use a dedicated predictor to transform an instance of the hard problem into an instance of a simpler one solved to optimality. The obtained schedule is then transposed to the original problem. We introduce a structured learning approach which enables to fit the predictor using a database of instances with their optimal solution. Computational experiments show that the proposed learning based heuristics are competitive with state-of-the-art heuristics, notably on large instances for which they provide the best results.

Suggested Citation

  • Parmentier, Axel & T’Kindt, Vincent, 2023. "Structured learning based heuristics to solve the single machine scheduling problem with release times and sum of completion times," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1032-1041.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1032-1041
    DOI: 10.1016/j.ejor.2022.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F Della Croce & V T'kindt, 2002. "A Recovering Beam Search algorithm for the one-machine dynamic total completion time scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1275-1280, November.
    2. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    2. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    3. Jouglet, Antoine & Savourey, David & Carlier, Jacques & Baptiste, Philippe, 2008. "Dominance-based heuristics for one-machine total cost scheduling problems," European Journal of Operational Research, Elsevier, vol. 184(3), pages 879-899, February.
    4. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    5. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    7. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    8. Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
    9. van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Luis O. Lara-Cerecedo & Jesús F. Hinojosa & Nun Pitalúa-Díaz & Yasuhiro Matsumoto & Alvaro González-Angeles, 2023. "Prediction of the Electricity Generation of a 60-kW Photovoltaic System with Intelligent Models ANFIS and Optimized ANFIS-PSO," Energies, MDPI, vol. 16(16), pages 1-26, August.
    12. Guo, Feng & Wei, Qu & Wang, Miao & Guo, Zhaoxia & Wallace, Stein W., 2023. "Deep attention models with dimension-reduction and gate mechanisms for solving practical time-dependent vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    14. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    15. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    16. Andre A. Cire & Adam Diamant, 2022. "Dynamic scheduling of home care patients to medical providers," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4038-4056, November.
    17. Yaping Ren & Xinyu Lu & Hongfei Guo & Zhaokang Xie & Haoyang Zhang & Chaoyong Zhang, 2023. "A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    18. Yagmur S. Gök & Silvia Padrón & Maurizio Tomasella & Daniel Guimarans & Cemalettin Ozturk, 2023. "Constraint-based robust planning and scheduling of airport apron operations through simheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 795-830, January.
    19. A Lim & Z Xu, 2009. "Searching optimal resequencing and feature assignment on an automated assembly line," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 361-371, March.
    20. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1032-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.