IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v293y2021i3p1113-1130.html
   My bibliography  Save this article

An efficient column generation approach for practical railway crew scheduling with attendance rates

Author

Listed:
  • Neufeld, Janis S.
  • Scheffler, Martin
  • Tamke, Felix
  • Hoffmann, Kirsten
  • Buscher, Udo

Abstract

The crew scheduling problem with attendance rates is highly relevant for regional passenger rail transport in Germany. Its major characteristic is that only a certain percentage of trains have to be covered by crew members or conductors, causing a significant increase in complexity. Despite being commonly found in regional transport networks, discussions regarding this issue remain relatively rare in the literature. We propose a novel hybrid column generation approach for a real-world problem in railway passenger transport. To the best of our knowledge, several realistic requirements that are necessary for successful application of generated schedules in practice have been integrated for the first time in this study. A mixed integer programming model is used to solve the master problem, whereas a genetic algorithm is applied for the pricing problem. Several improvement strategies are applied to accelerate the solution process; these strategies are analyzed in detail and are exemplified. The effectiveness of the proposed algorithm is proven by a comprehensive computational study using real-world instances, which are made publicly available. Further we provide real optimality gaps on average less than 10 % based on lower bounds generated by solving an arc flow formulation. The developed approach is successfully used in practice by DB Regio AG.

Suggested Citation

  • Neufeld, Janis S. & Scheffler, Martin & Tamke, Felix & Hoffmann, Kirsten & Buscher, Udo, 2021. "An efficient column generation approach for practical railway crew scheduling with attendance rates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1113-1130.
  • Handle: RePEc:eee:ejores:v:293:y:2021:i:3:p:1113-1130
    DOI: 10.1016/j.ejor.2020.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720311206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    2. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    3. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.
    4. Silke Jütte & Marc Albers & Ulrich W. Thonemann & Knut Haase, 2011. "Optimizing Railway Crew Scheduling at DB Schenker," Interfaces, INFORMS, vol. 41(2), pages 109-122, April.
    5. J. P. Arabeyre & J. Fearnley & F. C. Steiger & W. Teather, 1969. "The Airline Crew Scheduling Problem: A Survey," Transportation Science, INFORMS, vol. 3(2), pages 140-163, May.
    6. Balaji Gopalakrishnan & Ellis. Johnson, 2005. "Airline Crew Scheduling: State-of-the-Art," Annals of Operations Research, Springer, vol. 140(1), pages 305-337, November.
    7. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    8. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    9. A.T. Ernst & H. Jiang & M. Krishnamoorthy & H. Nott & D. Sier, 2001. "An Integrated Optimization Model for Train Crew Management," Annals of Operations Research, Springer, vol. 108(1), pages 211-224, November.
    10. Shen, Yindong & Peng, Kunkun & Chen, Kai & Li, Jingpeng, 2013. "Evolutionary crew scheduling with adaptive chromosomes," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 174-185.
    11. Mourgaya, M. & Vanderbeck, F., 2007. "Column generation based heuristic for tactical planning in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1028-1041, December.
    12. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    13. Şahin, Güvenç & Yüceoğlu, Birol, 2011. "Tactical crew planning in railways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1221-1243.
    14. Suyabatmaz, Ali Çetin & Şahin, Güvenç, 2015. "Railway crew capacity planning problem with connectivity of schedules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 88-100.
    15. Dauzère-Pérès, Stéphane & De Almeida, David & Guyon, Olivier & Benhizia, Faten, 2015. "A Lagrangian heuristic framework for a real-life integrated planning problem of railway transportation resources," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 138-150.
    16. Carraresi, P. & Gallo, G., 1984. "Network models for vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 16(2), pages 139-151, May.
    17. Jütte, Silke & Thonemann, Ulrich W., 2012. "Divide-and-price: A decomposition algorithm for solving large railway crew scheduling problems," European Journal of Operational Research, Elsevier, vol. 219(2), pages 214-223.
    18. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    19. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    20. Robert E. Bixby & John W. Gregory & Irvin J. Lustig & Roy E. Marsten & David F. Shanno, 1992. "Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods," Operations Research, INFORMS, vol. 40(5), pages 885-897, October.
    21. Kirsten Hoffmann & Udo Buscher & Janis Sebastian Neufeld & Felix Tamke, 2017. "Solving Practical Railway Crew Scheduling Problems with Attendance Rates," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 147-159, June.
    22. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    23. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    2. Kirsten Hoffmann & Udo Buscher & Janis Sebastian Neufeld & Felix Tamke, 2017. "Solving Practical Railway Crew Scheduling Problems with Attendance Rates," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 147-159, June.
    3. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    4. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    5. Thomas Breugem & Twan Dollevoet & Dennis Huisman, 2022. "Is Equality Always Desirable? Analyzing the Trade-Off Between Fairness and Attractiveness in Crew Rostering," Management Science, INFORMS, vol. 68(4), pages 2619-2641, April.
    6. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    7. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    8. Suyabatmaz, Ali Çetin & Şahin, Güvenç, 2015. "Railway crew capacity planning problem with connectivity of schedules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 88-100.
    9. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    10. Guy Desaulniers & François Lessard & Mohammed Saddoune & François Soumis, 2020. "Dynamic Constraint Aggregation for Solving Very Large-scale Airline Crew Pairing Problems," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    11. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    12. Gamermann, Ronaldo W. & Ferreira, Luciano & Borenstein, Denis, 2023. "Long-term audit staff scheduling and planning: A case study of Brazilian civil aviation authority," Journal of Air Transport Management, Elsevier, vol. 106(C).
    13. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    14. Vaidyanathan, Balachandran, 2007. "Multi-Commodity Network Flow Based Approaches for the Railroad Crew Scheduling Problem," 48th Annual Transportation Research Forum, Boston, Massachusetts, March 15-17, 2007 207928, Transportation Research Forum.
    15. Silke Jütte & Marc Albers & Ulrich W. Thonemann & Knut Haase, 2011. "Optimizing Railway Crew Scheduling at DB Schenker," Interfaces, INFORMS, vol. 41(2), pages 109-122, April.
    16. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    17. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    19. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.
    20. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:293:y:2021:i:3:p:1113-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.