IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i3p1095-1113.html
   My bibliography  Save this article

Optimizing predictive precision in imbalanced datasets for actionable revenue change prediction

Author

Listed:
  • Mahajan, Pravar Dilip
  • Maurya, Abhinav
  • Megahed, Aly
  • Elwany, Alaa
  • Strong, Ray
  • Blomberg, Jeanette

Abstract

In business environments where an organization offers contract-based periodic services to its clients, one crucial task is to predict changes in revenues generated through different clients or specific service offerings from one time epoch to another. This is commonly known as the revenue change prediction problem. In practical real-world environments, the importance of having adequate revenue change prediction capability primarily stems from scarcity of resources (in particular, sales team personnel or technical consultants) that are needed to respond to different revenue change scenarios including predicted revenue growth or shrinkage. It becomes important to make actionable decisions; that is, decisions related to prioritizing clients or service offerings to which these scarce resources are to be allocated. The contribution of the current work is twofold. First, we propose a framework for conducting revenue change prediction through casting it as a classification problem. Second, since datasets associated with revenue change prediction are typically imbalanced, we develop a new methodology for solving the classification problem such that we achieve maximum prediction precision while minimizing sacrifice in prediction accuracy. We validate our proposed framework through real-world datasets acquired from a major global provider of cloud computing services, and benchmark its performance against standard classifiers from previous works in the literature.

Suggested Citation

  • Mahajan, Pravar Dilip & Maurya, Abhinav & Megahed, Aly & Elwany, Alaa & Strong, Ray & Blomberg, Jeanette, 2020. "Optimizing predictive precision in imbalanced datasets for actionable revenue change prediction," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1095-1113.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1095-1113
    DOI: 10.1016/j.ejor.2020.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720301715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    2. Ljubomir Buturovic & Mike Wong & Grace W Tang & Russ B Altman & Dragutin Petkovic, 2014. "High Precision Prediction of Functional Sites in Protein Structures," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
    3. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    4. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    2. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    3. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    4. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    5. Tang, Leilei & Thomas, Lyn & Fletcher, Mary & Pan, Jiazhu & Marshall, Andrew, 2014. "Assessing the impact of derived behavior information on customer attrition in the financial service industry," European Journal of Operational Research, Elsevier, vol. 236(2), pages 624-633.
    6. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    8. Uner, M.Mithat & Guven, Faruk & Cavusgil, S.Tamer, 2020. "Churn and loyalty behavior of Turkish digital natives: Empirical insights and managerial implications," Telecommunications Policy, Elsevier, vol. 44(4).
    9. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    10. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    11. Maldonado, Sebastián & Domínguez, Gonzalo & Olaya, Diego & Verbeke, Wouter, 2021. "Profit-driven churn prediction for the mutual fund industry: A multisegment approach," Omega, Elsevier, vol. 100(C).
    12. Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.
    13. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
    15. Maldonado, Sebastián & López, Julio & Vairetti, Carla, 2020. "Profit-based churn prediction based on Minimax Probability Machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 273-284.
    16. Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.
    17. Aimée Backiel & Bart Baesens & Gerda Claeskens, 2016. "Predicting time-to-churn of prepaid mobile telephone customers using social network analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1135-1145, September.
    18. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    19. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    20. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1095-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.