IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i2p675-692.html
   My bibliography  Save this article

The Hybrid Electric Vehicle—Traveling Salesman Problem with time windows

Author

Listed:
  • Doppstadt, Christian
  • Koberstein, Achim
  • Vigo, Daniele

Abstract

In this paper, we extend the Hybrid Electric Vehicle – Traveling Salesman Problem (HEV-TSP) that deploys hybrid electric vehicles for customer delivery tours, by considering that customers must be served within given time windows. This feature makes the problem very difficult to solve. We developed a Variable Neighborhood Search based heuristic solution method, which is able to handle hybrid electric vehicle problems with a realistic number of customers. We introduce a large set of benchmark instances, representing typical delivery areas for small package shipping companies. Exact solutions for instances with a small number of customers are calculated by formulating the problem as an integer linear program and solving the instances with the standard solver CPLEX. The proposed heuristic achieves optimal solutions on the small and good quality solutions on larger instances. Furthermore, the results show that the profitability of hybrid electric vehicles highly depends on the structure of the delivery area and the number of customers to serve. Therefore, our heuristic does not only serve to support decision makers in the daily tour planning, but also in the evaluation of the profitability of hybrid electric vehicles for a specific delivery area structure.

Suggested Citation

  • Doppstadt, Christian & Koberstein, Achim & Vigo, Daniele, 2020. "The Hybrid Electric Vehicle—Traveling Salesman Problem with time windows," European Journal of Operational Research, Elsevier, vol. 284(2), pages 675-692.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:675-692
    DOI: 10.1016/j.ejor.2019.12.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719310719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    2. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    3. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    4. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    5. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Doppstadt, C. & Koberstein, A. & Vigo, D., 2016. "The Hybrid Electric Vehicle – Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 825-842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz-Cachinero, Pablo & Muñoz-Hernandez, Jose Ignacio & Contreras, Javier, 2021. "Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management," Applied Energy, Elsevier, vol. 304(C).
    2. Seyfi, Majid & Alinaghian, Mahdi & Ghorbani, Erfan & Çatay, Bülent & Saeid Sabbagh, Mohammad, 2022. "Multi-mode hybrid electric vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    2. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    3. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    4. Bongiovanni, Claudia & Kaspi, Mor & Geroliminis, Nikolas, 2019. "The electric autonomous dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 436-456.
    5. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    6. Hof, Julian & Schneider, Michael & Goeke, Dominik, 2017. "Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 102-112.
    7. Seyfi, Majid & Alinaghian, Mahdi & Ghorbani, Erfan & Çatay, Bülent & Saeid Sabbagh, Mohammad, 2022. "Multi-mode hybrid electric vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    9. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    10. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    11. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    12. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    14. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    15. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    16. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    17. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "The electric on-demand bus routing problem with partial charging and nonlinear functions," Working Papers 2022005, University of Antwerp, Faculty of Business and Economics.
    18. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    19. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    20. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:675-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.