IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i2p445-459.html
   My bibliography  Save this article

Grouping tasks to save energy in a cyclic scheduling problem: A complexity study

Author

Listed:
  • Hanen, Claire
  • Hanzalek, Zdenek

Abstract

This paper is motivated by the repetitive and periodic transmission of messages in Wireless Sensor Networks (WSNs) given by the ZigBee standard. In order to save energy, communication tasks are grouped in time. The WSN applications, such as control loops used in production lines, impose deadlines on the message delivery time.

Suggested Citation

  • Hanen, Claire & Hanzalek, Zdenek, 2020. "Grouping tasks to save energy in a cyclic scheduling problem: A complexity study," European Journal of Operational Research, Elsevier, vol. 284(2), pages 445-459.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:445-459
    DOI: 10.1016/j.ejor.2020.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanen, Claire, 1994. "Study of a NP-hard cyclic scheduling problem: The recurrent job-shop," European Journal of Operational Research, Elsevier, vol. 72(1), pages 82-101, January.
    2. Kats, Vladimir & Levner, Eugene, 2011. "A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route and interval processing times," European Journal of Operational Research, Elsevier, vol. 209(1), pages 51-56, February.
    3. Che, Ada & Feng, Jianguang & Chen, Haoxun & Chu, Chengbin, 2015. "Robust optimization for the cyclic hoist scheduling problem," European Journal of Operational Research, Elsevier, vol. 240(3), pages 627-636.
    4. Munier, A., 1996. "The complexity of a cyclic scheduling problem with identical machines and precedence constraints," European Journal of Operational Research, Elsevier, vol. 91(3), pages 471-480, June.
    5. Kats, Vladimir & Levner, Eugene, 2018. "On the existence of dominating 6-cyclic schedules in four-machine robotic cells," European Journal of Operational Research, Elsevier, vol. 268(2), pages 755-759.
    6. Alcaide, David & Chu, Chengbin & Kats, Vladimir & Levner, Eugene & Sierksma, Gerard, 2007. "Cyclic multiple-robot scheduling with time-window constraints using a critical path approach," European Journal of Operational Research, Elsevier, vol. 177(1), pages 147-162, February.
    7. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
    8. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    9. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idir Hamaz & Laurent Houssin & Sonia Cafieri, 2018. "A robust basic cyclic scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 291-313, September.
    2. Přemysl Šůcha & Zdeněk Hanzálek, 2011. "A cyclic scheduling problem with an undetermined number of parallel identical processors," Computational Optimization and Applications, Springer, vol. 48(1), pages 71-90, January.
    3. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    4. Hamaz, Idir & Houssin, Laurent & Cafieri, Sonia, 2024. "The robust cyclic job shop problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 855-865.
    5. Che, Ada & Kats, Vladimir & Levner, Eugene, 2017. "An efficient bicriteria algorithm for stable robotic flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 260(3), pages 964-971.
    6. Jason Pan & Chi-Shiang Su, 2015. "Two parallel machines problem with job delivery coordination and availability constraint," Annals of Operations Research, Springer, vol. 235(1), pages 653-664, December.
    7. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    8. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    9. Biber Nurit & Mor Baruch & Schlissel Yitzhak & Shapira Dana, 2023. "Lot scheduling involving completion time problems on identical parallel machines," Operational Research, Springer, vol. 23(1), pages 1-29, March.
    10. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    11. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    12. Cheng, T. C. Edwin & Janiak, Adam & Kovalyov, Mikhail Y., 2001. "Single machine batch scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 135(1), pages 177-183, November.
    13. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    14. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    15. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    16. A. Dolgui & M. Kovalyov & K. Shchamialiova, 2011. "Multi-product lot-sizing and sequencing on a single imperfect machine," Computational Optimization and Applications, Springer, vol. 50(3), pages 465-482, December.
    17. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    18. Xin Li & Richard Y. K. Fung, 2016. "Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times," Journal of Scheduling, Springer, vol. 19(2), pages 165-176, April.
    19. Esswein, Carl & Billaut, Jean-Charles & Strusevich, Vitaly A., 2005. "Two-machine shop scheduling: Compromise between flexibility and makespan value," European Journal of Operational Research, Elsevier, vol. 167(3), pages 796-809, December.
    20. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:445-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.