The K-server problem via a modern optimization lens
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2018.12.044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tomislav Rudec & Alfonzo Baumgartner & Robert Manger, 2013. "A fast work function algorithm for solving the k-server problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 187-205, January.
- Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
- Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
- Ethan Anderes & Steffen Borgwardt & Jacob Miller, 2016. "Discrete Wasserstein barycenters: optimal transport for discrete data," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 389-409, October.
- Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
- Dallinger, Bettina & Schwabeneder, Daniel & Lettner, Georg & Auer, Hans, 2019. "Socio-economic benefit and profitability analyses of Austrian hydro storage power plants supporting increasing renewable electricity generation in Central Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 482-496.
- Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
- Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
- Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
- Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
- Hesaraki, Alireza F. & Dellaert, Nico P. & de Kok, Ton, 2019. "Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan," European Journal of Operational Research, Elsevier, vol. 275(1), pages 304-318.
- Tomislav Rudec & Robert Manger, 2015. "A fast approximate implementation of the work function algorithm for solving the $$k$$ k -server problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 699-722, September.
- Ky Vu & Pierre-Louis Poirion & Leo Liberti, 2018. "Random Projections for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1051-1071, November.
- Jazeem Abdul Jaleel & Sherwin Doroudi & Kristen Gardner & Alexander Wickeham, 2022. "A general “power-of-d” dispatching framework for heterogeneous systems," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 431-480, December.
- Madani, Mehdi & Van Vyve, Mathieu, 2018. "Revisiting minimum profit conditions in uniform price day-ahead electricity auctions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1072-1085.
- Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
- Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
- Agra, Agostinho & Poss, Michael & Santos, Micael, 2018. "Optimizing make-to-stock policies through a robust lot-sizing model," International Journal of Production Economics, Elsevier, vol. 200(C), pages 302-310.
- Alexander H. Gose & Brian T. Denton, 2016. "Sequential Bounding Methods for Two-Stage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 351-369, May.
- Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
- Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
More about this item
Keywords
Scheduling; Adaptive robust optimization; Work Function Algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:1:p:65-78. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.