IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i3p1072-1085.html
   My bibliography  Save this article

Revisiting minimum profit conditions in uniform price day-ahead electricity auctions

Author

Listed:
  • Madani, Mehdi
  • Van Vyve, Mathieu

Abstract

We examine the problem of clearing day-ahead electricity market auctions where each bidder, whether a producer or consumer, can specify a minimum profit or maximum payment condition constraining the acceptance of a set of bid curves spanning multiple time periods in locations connected through a transmission network with linear constraints. Such types of conditions are for example considered in the Spanish and Portuguese day-ahead markets. This helps describing the recovery of start-up costs of a power plant, or analogously for a large consumer, utility reduced by a constant term. A new market model is proposed with a corresponding MILP formulation for uniform locational price day-ahead auctions, handling bids with a minimum profit or maximum payment condition in a uniform and computationally-efficient way. An exact decomposition procedure with sparse strengthened Benders cuts derived from the MILP formulation is also proposed. The MILP formulation and the decomposition procedure are similar to computationally-efficient approaches previously proposed to handle so-called block bids according to European market rules, though the clearing conditions could appear different at first sight. Both solving approaches are also valid to deal with both kinds of bids simultaneously, as block bids with a minimum acceptance ratio, generalizing fully indivisible block bids, are but a special case of the MP bids introduced here. We argue in favour of the MP bids by comparing them to previous models for minimum profit conditions proposed in the academic literature, and to the model for minimum income conditions used by the Spanish power exchange OMIE.

Suggested Citation

  • Madani, Mehdi & Van Vyve, Mathieu, 2018. "Revisiting minimum profit conditions in uniform price day-ahead electricity auctions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1072-1085.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1072-1085
    DOI: 10.1016/j.ejor.2017.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717309372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madani, Mehdi & Van Vyve, Mathieu, 2015. "Computationally efficient MIP formulation and algorithms for European day-ahead electricity market auctions," European Journal of Operational Research, Elsevier, vol. 242(2), pages 580-593.
    2. Garci'a-Bertrand, Raquel & Conejo, Antonio J. & Gabriel, Steven, 2006. "Electricity market near-equilibrium under locational marginal pricing and minimum profit conditions," European Journal of Operational Research, Elsevier, vol. 174(1), pages 457-479, October.
    3. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, Decembrie.
    4. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    5. Mehdi Madani & Mathieu Van Vyve, 2017. "A MIP framework for non-convex uniform price day-ahead electricity auctions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 263-284, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets," Applied Energy, Elsevier, vol. 231(C), pages 235-258.
    2. Dávid Csercsik & Ádám Sleisz & Péter Márk Sőrés, 2019. "The Uncertain Bidder Pays Principle and Its Implementation in a Simple Integrated Portfolio-Bidding Energy-Reserve Market Model," Energies, MDPI, vol. 12(15), pages 1-25, August.
    3. Divényi, Dániel & Polgári, Beáta & Sleisz, Ádám & Sőrés, Péter & Raisz, Dávid, 2021. "Investigating minimum income condition orders on European power exchanges: Controversial properties and enhancement proposals," Applied Energy, Elsevier, vol. 281(C).
    4. Csercsik, Dávid, 2021. "Strategic bidding via the interplay of minimum income condition orders in day-ahead power exchanges," Energy Economics, Elsevier, vol. 95(C).
    5. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    6. Nikolaos Koltsaklis & Athanasios Dagoumas, 2018. "Policy Implications of Power Exchanges on Operational Scheduling: Evaluating EUPHEMIA’s Market Products in Case of Greece," Energies, MDPI, vol. 11(10), pages 1-26, October.
    7. Shavandi, Hassan & Pirnia, Mehrdad & Fuller, J. David, 2019. "Extended opportunity cost model to find near equilibrium electricity prices under non-convexities," Applied Energy, Elsevier, vol. 240(C), pages 251-264.
    8. Le Cadre, Hélène & Jacquot, Paulin & Wan, Cheng & Alasseur, Clémence, 2020. "Peer-to-peer electricity market analysis: From variational to Generalized Nash Equilibrium," European Journal of Operational Research, Elsevier, vol. 282(2), pages 753-771.
    9. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2022. "Extensions for Benders cuts and new valid inequalities for solving the European day-ahead electricity market clearing problem efficiently," European Journal of Operational Research, Elsevier, vol. 300(2), pages 713-726.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Madani & Mathieu Van Vyve, 2017. "A MIP framework for non-convex uniform price day-ahead electricity auctions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 263-284, March.
    2. Madani, M. & Van Vyve, M., 2015. "A MIP framework for non-convex uniform price day-ahead electricity auctions," LIDAM Discussion Papers CORE 2015017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. D'avid Csercsik, 2020. "Strategic bidding via the interplay of minimum income condition orders in day-ahead power exchanges," Papers 2012.07789, arXiv.org.
    4. Nermin Elif Kurt & H. Bahadir Sahin & Kurc{s}ad Derinkuyu, 2018. "An Adaptive Tabu Search Algorithm for Market Clearing Problem in Turkish Day-Ahead Market," Papers 1809.10554, arXiv.org.
    5. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2022. "Extensions for Benders cuts and new valid inequalities for solving the European day-ahead electricity market clearing problem efficiently," European Journal of Operational Research, Elsevier, vol. 300(2), pages 713-726.
    6. Csercsik, Dávid, 2021. "Strategic bidding via the interplay of minimum income condition orders in day-ahead power exchanges," Energy Economics, Elsevier, vol. 95(C).
    7. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    8. Jolian McHardy & Michael Reynolds & Stephen Trotter, 2012. "The Stackelberg Model as a Partial Solution to the Problem of Pricing in a Network," Working Paper series 19_12, Rimini Centre for Economic Analysis.
    9. Gregory Casey & Ryo Horii, 2024. "A Generalized Uzawa Growth Theorem," Journal of Political Economy Macroeconomics, University of Chicago Press, vol. 2(2), pages 336-373.
    10. Janvier D. Nkurunziza, 2005. "Reputation and Credit without Collateral in Africa`s Formal Banking," Economics Series Working Papers WPS/2005-02, University of Oxford, Department of Economics.
    11. Pizer, William A. & Kopp, Raymond, 2005. "Calculating the Costs of Environmental Regulation," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 25, pages 1307-1351, Elsevier.
    12. Jazeem Abdul Jaleel & Sherwin Doroudi & Kristen Gardner & Alexander Wickeham, 2022. "A general “power-of-d” dispatching framework for heterogeneous systems," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 431-480, December.
    13. Ho Geun Jang & Satoshi Yamazaki & Eriko Hoshino, 2019. "Profit and equity trade‐offs in the management of small pelagic fisheries: the case of the Japanese sardine fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 549-574, July.
    14. Houba, Harold & van der Laan, Gerard & Zeng, Yuyu, 2014. "Asymmetric Nash Solutions in the River Sharing Problem," Strategic Behavior and the Environment, now publishers, vol. 4(4), pages 321-360, December.
    15. Stephanie Rosenkranz & Patrick W. Schmitz, 2007. "Can Coasean Bargaining Justify Pigouvian Taxation?," Economica, London School of Economics and Political Science, vol. 74(296), pages 573-585, November.
    16. Mackowiak, Piotr, 2010. "The existence of equilibrium without fixed-point arguments," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1194-1199, November.
    17. Vadim Borokhov, 2014. "On the properties of nodal price response matrix in electricity markets," Papers 1404.3678, arXiv.org, revised Jan 2015.
    18. Yuzhou Jiang & Ramteen Sioshansi, 2023. "What Duality Theory Tells Us About Giving Market Operators the Authority to Dispatch Energy Storage," The Energy Journal, , vol. 44(3), pages 89-110, May.
    19. Daniel Sutter & Daniel J. Smith, 2017. "Coordination in disaster: Nonprice learning and the allocation of resources after natural disasters," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(4), pages 469-492, December.
    20. Aad Ruiter, 2020. "Approximating Walrasian Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 577-596, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1072-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.