IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i1p364-371.html
   My bibliography  Save this article

Three methods for robust grading

Author

Listed:
  • Burer, Samuel
  • Piccialli, Veronica

Abstract

We propose three strategies by which a professor of a university course can assign final letter grades taking into account the natural uncertainty in students’ individual assignment and final numerical grades. The first strategy formalizes a common technique that identifies large gaps in the final numerical grades. For the second and third strategies, we introduce the notion of a borderline student, that is, a student who is close to, but below, the breakpoint for the next highest letter grade. Using mixed-integer linear programming and a tailor-made branch-and-bound algorithm, we choose the letter-grade breakpoints to minimize the number of borderline students. In particular, the second strategy treats the uncertainty implicitly and minimizes the number of borderline students, while the third strategy uses a robust-optimization approach to minimize the maximum number of borderline students that could occur based on an explicit uncertainty set. We compare the three strategies on realistic instances and identify overall trends as well as some interesting exceptions. While no strategy appears best in all cases, each can be computed in a reasonable amount of time for a moderately sized course. Moreover, they collectively provide the professor important insight into how uncertainty affects the assignment of final letter grades.

Suggested Citation

  • Burer, Samuel & Piccialli, Veronica, 2019. "Three methods for robust grading," European Journal of Operational Research, Elsevier, vol. 272(1), pages 364-371.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:364-371
    DOI: 10.1016/j.ejor.2018.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718305423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    2. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    2. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    3. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    4. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    5. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    6. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    7. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    8. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    9. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    10. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    11. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.
    12. Chen, Andrew N.K. & Goes, Paulo B. & Gupta, Alok & Marsden, James R., 2006. "Heuristics for selecting robust database structures with dynamic query patterns," European Journal of Operational Research, Elsevier, vol. 168(1), pages 200-220, January.
    13. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    14. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    15. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    16. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    17. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    18. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    19. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    20. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:364-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.