IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i2p625-635.html
   My bibliography  Save this article

Calculation of the performance region of an easy-to-optimize alternative for Generalized Processor Sharing

Author

Listed:
  • Vanlerberghe, Jasper
  • Walraevens, Joris
  • Maertens, Tom
  • Bruneel, Herwig

Abstract

Service differentiation is a basic requirement in every modern queueing system with multiple classes of customers. In this paper, we look at Hierarchical Generalized Processor Sharing (H-GPS), which is a discrete-time hierarchically-structured implementation of the well-known idealized Generalized Processor Sharing (GPS) scheduling discipline. We prove that, for three classes, H-GPS can be configured to obtain any performance possible by other scheduling mechanisms, such as priority queueing or GPS. The hierarchical nature of a H-GPS system, however, has the major advantage that optimization is easier and more intuitive. To this end, we also present an algorithm to calculate the configuration parameters for H-GPS given a certain performance objective.

Suggested Citation

  • Vanlerberghe, Jasper & Walraevens, Joris & Maertens, Tom & Bruneel, Herwig, 2018. "Calculation of the performance region of an easy-to-optimize alternative for Generalized Processor Sharing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 625-635.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:625-635
    DOI: 10.1016/j.ejor.2018.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718303217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Federgruen & H. Groenevelt, 1988. "M/G/c Queueing Systems with Multiple Customer Classes: Characterization and Control of Achievable Performance Under Nonpreemptive Priority Rules," Management Science, INFORMS, vol. 34(9), pages 1121-1138, September.
    2. Hassin, Refael & Puerto, Justo & Fernández, Francisco R., 2009. "The use of relative priorities in optimizing the performance of a queueing system," European Journal of Operational Research, Elsevier, vol. 193(2), pages 476-483, March.
    3. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    4. Öner-Közen, Miray & Minner, Stefan, 2017. "Impact of priority sequencing decisions on on-time probability and expected tardiness of orders in make-to-order production systems with external due-dates," European Journal of Operational Research, Elsevier, vol. 263(2), pages 524-539.
    5. Kim, Kilhwan & Chae, Kyung C., 2010. "Discrete-time queues with discretionary priorities," European Journal of Operational Research, Elsevier, vol. 200(2), pages 473-485, January.
    6. Pavlin, J. Michael, 2017. "Dual bounds of a service level assignment problem with applications to efficient pricing," European Journal of Operational Research, Elsevier, vol. 262(1), pages 239-250.
    7. J. George Shanthikumar & David D. Yao, 1992. "Multiclass Queueing Systems: Polymatroidal Structure and Optimal Scheduling Control," Operations Research, INFORMS, vol. 40(3-supplem), pages 293-299, June.
    8. Maglaras, Constantinos & Van Mieghem, Jan A., 2005. "Queueing systems with leadtime constraints: A fluid-model approach for admission and sequencing control," European Journal of Operational Research, Elsevier, vol. 167(1), pages 179-207, November.
    9. M. Dacre & K. Glazebrook & J. Niño‐Mora, 1999. "The achievable region approach to the optimal control of stochastic systems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 747-791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legros, Benjamin & Jouini, Oualid, 2019. "On the scheduling of operations in a chat contact center," European Journal of Operational Research, Elsevier, vol. 274(1), pages 303-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasper Vanlerberghe & Tom Maertens & Joris Walraevens & Stijn Vuyst & Herwig Bruneel, 2016. "On the optimization of two-class work-conserving parameterized scheduling policies," 4OR, Springer, vol. 14(3), pages 281-308, September.
    2. José Niño-Mora, 2006. "Restless Bandit Marginal Productivity Indices, Diminishing Returns, and Optimal Control of Make-to-Order/Make-to-Stock M/G/1 Queues," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 50-84, February.
    3. Bertsimas, Dimitris., 1995. "The achievable region method in the optimal control of queueing systems : formulations, bounds and policies," Working papers 3837-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. José Niño-Mora, 2000. "On certain greedoid polyhedra, partially indexable scheduling problems and extended restless bandit allocation indices," Economics Working Papers 456, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    6. R. Garbe & K. D. Glazebrook, 1998. "Submodular Returns and Greedy Heuristics for Queueing Scheduling Problems," Operations Research, INFORMS, vol. 46(3), pages 336-346, June.
    7. Muhammad El-Taha, 2016. "Invariance of workload in queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 83(1), pages 181-192, June.
    8. Bertsimas, Dimitris. & Niño-Mora, Jose., 1994. "Restless bandit, linear programming relaxations and a primal-dual heuristic," Working papers 3727-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    9. Esther Frostig & Gideon Weiss, 2016. "Four proofs of Gittins’ multiarmed bandit theorem," Annals of Operations Research, Springer, vol. 241(1), pages 127-165, June.
    10. Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
    11. Tianhu Deng & Ying‐Ju Chen & Zuo‐Jun Max Shen, 2015. "Optimal pricing and scheduling control of product shipping," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 215-227, April.
    12. Muhammad El-Taha, 2017. "A general workload conservation law with applications to queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 85(3), pages 361-381, April.
    13. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region method: Part II, the multi-station case," Economics Working Papers 314, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 1998.
    14. Dimitris Bertsimas & José Niño-Mora, 1999. "Optimization of Multiclass Queueing Networks with Changeover Times Via the Achievable Region Approach: Part I, The Single-Station Case," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 306-330, May.
    15. Sai Rajesh Mahabhashyam & Natarajan Gautam & Soundar R. T. Kumara, 2008. "Resource-Sharing Queueing Systems with Fluid-Flow Traffic," Operations Research, INFORMS, vol. 56(3), pages 728-744, June.
    16. Liao Wang & David D. Yao, 2021. "Risk Hedging for Production Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1825-1837, June.
    17. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.
    18. R. T. Dunn & K. D. Glazebrook, 2004. "Discounted Multiarmed Bandit Problems on a Collection of Machines with Varying Speeds," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 266-279, May.
    19. Legros, Benjamin, 2021. "Routing analyses for call centers with human and automated services," International Journal of Production Economics, Elsevier, vol. 240(C).
    20. Awi Federgruen & Ziv Katalan, 1998. "Determining Production Schedules Under Base-Stock Policies in Single Facility Multi-Item Production Systems," Operations Research, INFORMS, vol. 46(6), pages 883-898, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:625-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.