IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v91y2020ics030504831830183x.html
   My bibliography  Save this article

Exact approaches for the directed network design problem with relays

Author

Listed:
  • Leitner, Markus
  • Ljubić, Ivana
  • Riedler, Martin
  • Ruthmair, Mario

Abstract

We study the directed network design problem with relays (DNDPR) whose aim is to construct a minimum cost network that enables the communication of a given set of origin-destination pairs. Thereby, expensive signal regeneration devices need to be placed to cover communication distances exceeding a predefined threshold. Applications of the DNDPR arise in telecommunications and transportation. We propose two new integer programming formulations for the DNDPR. The first one is a flow-based formulation with a pseudo-polynomial number of variables and constraints and the second is a cut-based formulation with an exponential number of constraints. Fractional distance values are handled efficiently by augmenting both models with an exponentially-sized set of infeasible path constraints. We develop branch-and-cut algorithms and also consider valid inequalities to strengthen the obtained dual bounds and to speed up convergence. The results of our extensive computational study on diverse sets of benchmark instances show that our algorithms outperform the previous state-of-the-art method based on column generation.

Suggested Citation

  • Leitner, Markus & Ljubić, Ivana & Riedler, Martin & Ruthmair, Mario, 2020. "Exact approaches for the directed network design problem with relays," Omega, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jomega:v:91:y:2020:i:c:s030504831830183x
    DOI: 10.1016/j.omega.2018.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831830183X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiyong Xiao & Abdullah Konak, 2017. "A variable neighborhood search for the network design problem with relays," Journal of Heuristics, Springer, vol. 23(2), pages 137-164, June.
    2. Konak, Abdullah, 2012. "Network design problem with relays: A genetic algorithm with a path-based crossover and a set covering formulation," European Journal of Operational Research, Elsevier, vol. 218(3), pages 829-837.
    3. Cabral, Edgar Alberto & Erkut, Erhan & Laporte, Gilbert & Patterson, Raymond A., 2007. "The network design problem with relays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 834-844, July.
    4. De Boeck, Jérôme & Fortz, Bernard, 2018. "Extended formulation for hop constrained distribution network configuration problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 488-502.
    5. Si Chen & Ivana Ljubić & S. Raghavan, 2015. "The Generalized Regenerator Location Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 204-220, May.
    6. Li, Xiangyong & Aneja, Y.P. & Huo, Jiazhen, 2012. "Using branch-and-price approach to solve the directed network design problem with relays," Omega, Elsevier, vol. 40(5), pages 672-679.
    7. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    8. Ivana Ljubić & Stefan Gollowitzer, 2013. "Layered Graph Approaches to the Hop Constrained Connected Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 256-270, May.
    9. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    10. Gouveia, Luis & Leitner, Markus & Ljubić, Ivana, 2014. "Hop constrained Steiner trees with multiple root nodes," European Journal of Operational Research, Elsevier, vol. 236(1), pages 100-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    2. Kewcharoenwong, Panitan & Li, Qiaofeng & Üster, Halit, 2023. "Lagrangean relaxation algorithms for fixed-charge capacitated relay network design," Omega, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kewcharoenwong, Panitan & Li, Qiaofeng & Üster, Halit, 2023. "Lagrangean relaxation algorithms for fixed-charge capacitated relay network design," Omega, Elsevier, vol. 121(C).
    2. Markus Leitner & Ivana Ljubić & Martin Riedler & Mario Ruthmair, 2019. "Exact Approaches for Network Design Problems with Relays," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 171-192, February.
    3. Yiyong Xiao & Abdullah Konak, 2017. "A variable neighborhood search for the network design problem with relays," Journal of Heuristics, Springer, vol. 23(2), pages 137-164, June.
    4. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    6. Nigam, Ashutosh & Agarwal, Yogesh K., 2014. "Optimal relay node placement in delay constrained wireless sensor network design," European Journal of Operational Research, Elsevier, vol. 233(1), pages 220-233.
    7. Ozgur Kabadurmus & Alice E. Smith, 2016. "Multi-commodity k-splittable survivable network design problems with relays," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(1), pages 123-133, May.
    8. Gouveia, Luis & Leitner, Markus & Ruthmair, Mario, 2017. "Extended formulations and branch-and-cut algorithms for the Black-and-White Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 908-928.
    9. De Boeck, Jérôme & Fortz, Bernard, 2018. "Extended formulation for hop constrained distribution network configuration problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 488-502.
    10. Li, Xiangyong & Lin, Shaochong & Tian, Peng & Aneja, Y.P., 2017. "Models and column generation approach for the resource-constrained minimum cost path problem with relays," Omega, Elsevier, vol. 66(PA), pages 79-90.
    11. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    12. Barış Yıldız & Oya Ekin Karaşan, 2017. "Regenerator Location Problem in Flexible Optical Networks," Operations Research, INFORMS, vol. 65(3), pages 595-620, June.
    13. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Hong Zheng & Xiaozheng He & Yongfu Li & Srinivas Peeta, 2017. "Traffic Equilibrium and Charging Facility Locations for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(2), pages 435-457, June.
    15. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    16. Przemysław Kowalik & Grzegorz Sobecki & Piotr Bawoł & Paweł Muzolf, 2023. "A Flow-Based Formulation of the Travelling Salesman Problem with Penalties on Nodes," Sustainability, MDPI, vol. 15(5), pages 1-28, February.
    17. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    18. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    19. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    20. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:91:y:2020:i:c:s030504831830183x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.