IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v46y2014i11p1181-1195.html
   My bibliography  Save this article

Finding highly preferred points for multi-objective integer programs

Author

Listed:
  • Banu Lokman
  • Murat Köksalan

Abstract

This article develops exact algorithms to generate all non-dominated points in a specified region of the criteria space in Multi-Objective Integer Programs (MOIPs). Typically, there are too many non-dominated points in large MOIPs and it is not practical to generate them all. Therefore, the problem of generating non-dominated points in the preferred region of the decision-maker is addressed. To define the preferred region, the non-dominated set is approximated using a hyper-surface. A procedure is developed that then finds a preferred hypothetical point on this surface and defines a preferred region around the hypothetical point. Once the preferred region is defined, all non-dominated points in that region are generated. The performance of the proposed approach is tested on multi-objective assignment, multi-objective knapsack, and multi-objective shortest path problems with three and four objectives. Computational results show that a small set of non-dominated points is generated that contains highly preferred points in a reasonable time.

Suggested Citation

  • Banu Lokman & Murat Köksalan, 2014. "Finding highly preferred points for multi-objective integer programs," IISE Transactions, Taylor & Francis Journals, vol. 46(11), pages 1181-1195, November.
  • Handle: RePEc:taf:uiiexx:v:46:y:2014:i:11:p:1181-1195
    DOI: 10.1080/0740817X.2014.882532
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2014.882532
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2014.882532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    2. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
    3. Karakaya, G. & Köksalan, M. & Ahipaşaoğlu, S.D., 2018. "Interactive algorithms for a broad underlying family of preference functions," European Journal of Operational Research, Elsevier, vol. 265(1), pages 248-262.
    4. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    5. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:46:y:2014:i:11:p:1181-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.