IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i1p228-238.html
   My bibliography  Save this article

Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun

Author

Listed:
  • Hocine, Amine

Abstract

This paper explores the potential use of the meta-goal programing approach (meta-GP) for solving multi-criteria de Novo programing problems. Methodologically, the objectives of the de Novo programing problem are converted into meta-goals during formulation, following the meta-GP technique proposed by Rodriguez-Uría, Caballero, Ruiz, and Romero (2002), to arrive at the most satisfactory decision in the multi-objective decision-making context. This approach is shown superior to the conventional ‘multi-criteria solution procedure’ for the de Novo programing problem, in that it provides decision-makers with more flexibility in expressing their preferences, by merging the original explicit goals as meta-goals. Finally, the application of the proposed model to a decision case in identifying the best plan for the exploitation of wind energy sourcing is provided, illustrating the effectiveness of the proposed novel solution approach.

Suggested Citation

  • Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:228-238
    DOI: 10.1016/j.ejor.2017.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belaid Aouni & Fouad Ben Abdelaziz & Davide La Torre, 2012. "The stochastic goal programming model: Theory and applications," Post-Print hal-00778729, HAL.
    2. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    5. Rodriguez Uria, M. Victoria & Caballero, Rafael & Ruiz, Francisco & Romero, Carlos, 2002. "Meta-goal programming," European Journal of Operational Research, Elsevier, vol. 136(2), pages 422-429, January.
    6. Zeleny, Milan, 1986. "Optimal system design with multiple criteria: De Novo programming approach," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 89-94, June.
    7. Zhang, Y.M. & Huang, G.H. & Zhang, X.D., 2009. "Inexact de Novo programming for water resources systems planning," European Journal of Operational Research, Elsevier, vol. 199(2), pages 531-541, December.
    8. Caballero, Rafael & Ruiz, Francisco & Uria, M. Victoria Rodriguez & Romero, Carlos, 2006. "Interactive meta-goal programming," European Journal of Operational Research, Elsevier, vol. 175(1), pages 135-154, November.
    9. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, January.
    10. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    11. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    12. Himri, Y. & Rehman, S. & Draoui, B. & Himri, S., 2008. "Wind power potential assessment for three locations in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2495-2504, December.
    13. Bélaïd, Fateh & Abderrahmani, Fares, 2013. "Electricity consumption and economic growth in Algeria: A multivariate causality analysis in the presence of structural change," Energy Policy, Elsevier, vol. 55(C), pages 286-295.
    14. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    15. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    16. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    17. Lilliestam, Johan & Ellenbeck, Saskia, 2011. "Energy security and renewable electricity trade--Will Desertec make Europe vulnerable to the "energy weapon"?," Energy Policy, Elsevier, vol. 39(6), pages 3380-3391, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    2. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    3. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    4. Sheng Wu & Yi Zhang & Zheng-Yun Zhuang, 2018. "A Systematic Initial Study of Civic Scientific Literacy in China: Cross-National Comparable Results from Scientific Cognition to Sustainable Literacy," Sustainability, MDPI, vol. 10(9), pages 1-26, September.
    5. Nurullah Umarusman, 2018. "Fuzzy Goal Programming Problem Based on Minmax Approach for Optimal System Design," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(1), pages 177-192, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    2. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    3. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    4. Zhuang, Zheng-Yun & Chung, Cheng-Kung, 2024. "Dissecting the visiting willingness of driving visitors facing a retail market's dual-pricing policy for parking," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    5. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    6. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    7. Jones, D.F. & Treloar, R. & Ouelhadj, D. & Glampedakis, A. & Bartmeyer, P., 2024. "Incorporation of poverty principles into goal programming," Omega, Elsevier, vol. 127(C).
    8. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    9. González-Pachón, Jacinto & Romero, Carlos, 2016. "Bentham, Marx and Rawls ethical principles: In search for a compromise," Omega, Elsevier, vol. 62(C), pages 47-51.
    10. Benítez-Fernández, Amalia & Ruiz, Francisco, 2020. "A Meta-Goal Programming approach to cardinal preferences aggregation in multicriteria problems," Omega, Elsevier, vol. 94(C).
    11. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    12. Marta Ezquerro & Marta Pardos & Luis Diaz-Balteiro, 2019. "Sustainability in Forest Management Revisited Using Multi-Criteria Decision-Making Techniques," Sustainability, MDPI, vol. 11(13), pages 1-24, July.
    13. Salem Nechi & Belaid Aouni & Zouhair Mrabet, 2020. "Managing sustainable development through goal programming model and satisfaction functions," Annals of Operations Research, Springer, vol. 293(2), pages 747-766, October.
    14. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    15. Francisco Salas-Molina & Filippo Bistaffa & Juan A. Rodriguez-Aguilar, 2024. "A General Approach for Computing a Consensus in Group Decision Making That Integrates Multiple Ethical Principles," Papers 2401.07818, arXiv.org, revised Mar 2024.
    16. Fernando García & Francisco Guijarro & Javier Oliver, 2021. "A Multicriteria Goal Programming Model for Ranking Universities," Mathematics, MDPI, vol. 9(5), pages 1-17, February.
    17. Zgajnar, Jaka & Kavcic, Stane, 2011. "Weighted Goal Programming and Penalty Functions: Whole-farm Planning Approach Under Risk," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 118033, European Association of Agricultural Economists.
    18. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    19. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    20. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:228-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.