IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i3p929-940.html
   My bibliography  Save this article

Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems

Author

Listed:
  • Chen, Wenliang
  • Wang, Zheng
  • Chan, Felix T.S.

Abstract

In this paper, wafer lots transfer probability (WLTP) is introduced to capture the flowing rate of wafer lots among production bays, which is uncertain due to various wafer types and quantities. We study a new production capacity planning problem for wafer fabrication systems with uncertain WLTP. Based on an open queueing network model, the average work-in-process (WIP) level of the system is evaluated. Because of the uncertain WLTP, the average WIP level fluctuates significantly and sometimes exceeds its upper bound. Therefore, we develop a robust production capacity planning model with two layers: the bottom layer for finding the maximum WIP fluctuation under a given vehicle quantity, and the upper layer for determining the vehicle quantities to minimize the WIP fluctuation and the probability of the average WIP exceeding the upper bound. A method based on the monotonicity of the objective functions is developed to solve such a bi-objective optimization problem.

Suggested Citation

  • Chen, Wenliang & Wang, Zheng & Chan, Felix T.S., 2017. "Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 929-940.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:3:p:929-940
    DOI: 10.1016/j.ejor.2017.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717301480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swaminathan, Jayashankar M., 2000. "Tool capacity planning for semiconductor fabrication facilities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 120(3), pages 545-558, February.
    2. Wu, Kan, 2014. "Taxonomy of batch queueing models in manufacturing systems," European Journal of Operational Research, Elsevier, vol. 237(1), pages 129-135.
    3. Geng, Na & Jiang, Zhibin & Chen, Feng, 2009. "Stochastic programming based capacity planning for semiconductor wafer fab with uncertain demand and capacity," European Journal of Operational Research, Elsevier, vol. 198(3), pages 899-908, November.
    4. Chou, Yon-Chun & Cheng, C.-T. & Yang, Feng-Cheng & Liang, Yi-Yu, 2007. "Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios," International Journal of Production Economics, Elsevier, vol. 105(2), pages 591-606, February.
    5. Kurz, Julian, 2016. "Capacity planning for a maintenance service provider with advanced information," European Journal of Operational Research, Elsevier, vol. 251(2), pages 466-477.
    6. Ying-Mei Tu & Hsin-Nan Chen, 2010. "Capacity planning with sequential time constraints under various control policies in the back-end of wafer fabrications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1258-1264, August.
    7. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    8. Chien, Chen-Fu & Wu, Cheng-Hung & Chiang, Yu-Shian, 2012. "Coordinated capacity migration and expansion planning for semiconductor manufacturing under demand uncertainties," International Journal of Production Economics, Elsevier, vol. 135(2), pages 860-869.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiying Li & Xiaoyu Tian & Li Yu & Rui Kang, 2019. "A Systematic Disturbance Analysis Method for Resilience Evaluation: A Case Study in Material Handling Systems," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    2. Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, James T. & Chen, Tzu-Li & Chu, Hsiao-Ching, 2014. "A stochastic dynamic programming approach for multi-site capacity planning in TFT-LCD manufacturing under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 148(C), pages 21-36.
    2. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    3. Smirnov, Dina & van Jaarsveld, Willem & Atan, Zümbül & de Kok, Ton, 2021. "Long-term resource planning in the high-tech industry: Capacity or inventory?," European Journal of Operational Research, Elsevier, vol. 293(3), pages 926-940.
    4. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    5. Wu, Xiaole & Kouvelis, Panos & Matsuo, Hirofumi & Sano, Hiroki, 2014. "Horizontal coordinating contracts in the semiconductor industry," European Journal of Operational Research, Elsevier, vol. 237(3), pages 887-897.
    6. Chou, Yon-Chun & Huang, Hsing-Yi & Jahn, John & Kuo, Chien-Hung, 2010. "A framework of economic analysis for tapered technology-manufacturing alliances," International Journal of Production Economics, Elsevier, vol. 127(2), pages 249-261, October.
    7. Chien, Chen-Fu & Wu, Cheng-Hung & Chiang, Yu-Shian, 2012. "Coordinated capacity migration and expansion planning for semiconductor manufacturing under demand uncertainties," International Journal of Production Economics, Elsevier, vol. 135(2), pages 860-869.
    8. de la Torre, R. & Lusa, A. & Mateo, M., 2016. "A MILP model for the long term academic staff size and composition planning in public universities," Omega, Elsevier, vol. 63(C), pages 1-11.
    9. Xie, Wenming & Jiang, Zhibin & Zhao, Yingxue & Hong, Junjie, 2014. "Capacity planning and allocation with multi-channel distribution," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 108-116.
    10. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    11. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    12. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    13. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    14. Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
    15. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    16. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    17. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    18. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    19. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    20. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:3:p:929-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.