IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i2p494-506.html
   My bibliography  Save this article

Markov Chain methods for the Bipartite Boolean Quadratic Programming Problem

Author

Listed:
  • Karapetyan, Daniel
  • Punnen, Abraham P.
  • Parkes, Andrew J.

Abstract

We study the Bipartite Boolean Quadratic Programming Problem (BBQP) which is an extension of the well known Boolean Quadratic Programming Problem (BQP). Applications of the BBQP include mining discrete patterns from binary data, approximating matrices by rank-one binary matrices, computing the cut-norm of a matrix, and solving optimisation problems such as maximum weight biclique, bipartite maximum weight cut, maximum weight induced sub-graph of a bipartite graph, etc. For the BBQP, we first present several algorithmic components, specifically, hill climbers and mutations, and then show how to combine them in a high-performance metaheuristic. Instead of hand-tuning a standard metaheuristic to test the efficiency of the hybrid of the components, we chose to use an automated generation of a multi-component metaheuristic to save human time, and also improve objectivity in the analysis and comparisons of components. For this we designed a new metaheuristic schema which we call Conditional Markov Chain Search (CMCS). We show that CMCS is flexible enough to model several standard metaheuristics; this flexibility is controlled by multiple numeric parameters, and so is convenient for automated generation. We study the configurations revealed by our approach and show that the best of them outperforms the previous state-of-the-art BBQP algorithm by several orders of magnitude. In our experiments we use benchmark instances introduced in the preliminary version of this paper and described here, which have already become the de facto standard in the BBQP literature.

Suggested Citation

  • Karapetyan, Daniel & Punnen, Abraham P. & Parkes, Andrew J., 2017. "Markov Chain methods for the Bipartite Boolean Quadratic Programming Problem," European Journal of Operational Research, Elsevier, vol. 260(2), pages 494-506.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:2:p:494-506
    DOI: 10.1016/j.ejor.2017.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717300061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    2. Glover, Fred & Ye, Tao & Punnen, Abraham P. & Kochenberger, Gary, 2015. "Integrating tabu search and VLSN search to develop enhanced algorithms: A case study using bipartite boolean quadratic programs," European Journal of Operational Research, Elsevier, vol. 241(3), pages 697-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    2. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    3. Qinghua Wu & Yang Wang & Fred Glover, 2020. "Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 74-89, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    2. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    3. Noureddine Bouhmala, 2019. "Combining simulated annealing with local search heuristic for MAX-SAT," Journal of Heuristics, Springer, vol. 25(1), pages 47-69, February.
    4. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    5. Julian Hof & Michael Schneider, 2021. "Intraroute Resource Replenishment with Mobile Depots," Transportation Science, INFORMS, vol. 55(3), pages 660-686, May.
    6. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    7. Venditti, Luca & Pacciarelli, Dario & Meloni, Carlo, 2010. "A tabu search algorithm for scheduling pharmaceutical packaging operations," European Journal of Operational Research, Elsevier, vol. 202(2), pages 538-546, April.
    8. Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
    9. García-Villoria, Alberto & Salhi, Said & Corominas, Albert & Pastor, Rafael, 2011. "Hyper-heuristic approaches for the response time variability problem," European Journal of Operational Research, Elsevier, vol. 211(1), pages 160-169, May.
    10. JANSSENS, Jochen & SÖRENSEN, Kenneth & JANSSENS, Gerrit K., 2016. "A parameter tuning method to analyse the influence of algorithmic parameters in combination with instance characteristics on the quality of a Pareto front," Working Papers 2016006, University of Antwerp, Faculty of Business and Economics.
    11. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    12. Ries, Jana & Beullens, Patrick & Salt, David, 2012. "Instance-specific multi-objective parameter tuning based on fuzzy logic," European Journal of Operational Research, Elsevier, vol. 218(2), pages 305-315.
    13. Cardona-Valdés, Y. & Álvarez, A. & Pacheco, J., 2014. "Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 66-84.
    14. Kleijnen, J.P.C. & Wan, J., 2006. "Optimization of Simulated Inventory Systems : OptQuest and Alternatives," Discussion Paper 2006-75, Tilburg University, Center for Economic Research.
    15. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    16. Casas-Ramírez, Martha-Selene & Camacho-Vallejo, José-Fernando & Martínez-Salazar, Iris-Abril, 2018. "Approximating solutions to a bilevel capacitated facility location problem with customer's patronization toward a list of preferences," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 369-386.
    17. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2018. "The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 143-184, June.
    18. García-Villoria, Alberto & Pastor, Rafael, 2010. "Solving the response time variability problem by means of a genetic algorithm," European Journal of Operational Research, Elsevier, vol. 202(2), pages 320-327, April.
    19. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    20. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:2:p:494-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.