IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i3p1003-1016.html
   My bibliography  Save this article

An algorithmic framework for tool switching problems with multiple objectives

Author

Listed:
  • Furrer, Martina
  • Mütze, Torsten

Abstract

The tool switching problem is a classical and extensively studied problem in flexible manufacturing systems. The standard example is a CNC machine with a limited number of tool slots to which tools for drilling and milling have to be assigned, with the goal of minimizing the number of necessary tool switches and/or the number of machine stops over time. In this work we present a branch-and-bound based algorithmic framework for a very general and versatile formulation of this problem (involving arbitrary setup and processing times) that allows addressing both of these objectives simultaneously (or only of them), and that improves over several known approaches from the literature. We demonstrate the usefulness of our algorithm by rigorous theoretical analysis and by experiments with both large real-world and random instances.

Suggested Citation

  • Furrer, Martina & Mütze, Torsten, 2017. "An algorithmic framework for tool switching problems with multiple objectives," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1003-1016.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:1003-1016
    DOI: 10.1016/j.ejor.2016.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716309596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathryn E. Stecke, 1983. "Formulation and Solution of Nonlinear Integer Production Planning Problems for Flexible Manufacturing Systems," Management Science, INFORMS, vol. 29(3), pages 273-288, March.
    2. Ann E. Gray & Abraham Seidmann & Kathryn E. Stecke, 1993. "A Synthesis of Decision Models for Tool Management in Automated Manufacturing," Management Science, INFORMS, vol. 39(5), pages 549-567, May.
    3. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part II: Minimization of the Number of Switching Instants," Operations Research, INFORMS, vol. 36(5), pages 778-784, October.
    4. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part I: Minimization of the Number of Tool Switches," Operations Research, INFORMS, vol. 36(5), pages 767-777, October.
    5. Catanzaro, Daniele & Gouveia, Luis & Labbé, Martine, 2015. "Improved integer linear programming formulations for the job Sequencing and tool Switching Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 766-777.
    6. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    7. Caroline Privault & Gerd Finke, 2000. "k-server problems with bulk requests: an application to tool switching in manufacturing," Annals of Operations Research, Springer, vol. 96(1), pages 255-269, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhundov, Najmaddin & Ostrowski, James, 2024. "Exploiting symmetry for the job sequencing and tool switching problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 976-987.
    2. Dang, Quang-Vinh & van Diessen, Thijs & Martagan, Tugce & Adan, Ivo, 2021. "A matheuristic for parallel machine scheduling with tool replacements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 640-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Selim Akturk & Jay B. Ghosh & Evrim D. Gunes, 2003. "Scheduling with tool changes to minimize total completion time: A study of heuristics and their performance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 15-30, February.
    2. Beezão, Andreza Cristina & Cordeau, Jean-François & Laporte, Gilbert & Yanasse, Horacio Hideki, 2017. "Scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 257(3), pages 834-844.
    3. Matzliach, Barouch & Tzur, Michal, 2000. "Storage management of items in two levels of availability," European Journal of Operational Research, Elsevier, vol. 121(2), pages 363-379, March.
    4. Konak, Abdullah & Kulturel-Konak, Sadan & Azizoglu, Meral, 2008. "Minimizing the number of tool switching instants in Flexible Manufacturing Systems," International Journal of Production Economics, Elsevier, vol. 116(2), pages 298-307, December.
    5. Sodhi, Manbir S. & Lamond, Bernard F. & Gautier, Antoine & Noel, Martin, 2001. "Heuristics for determining economic processing rates in a flexible manufacturing system," European Journal of Operational Research, Elsevier, vol. 129(1), pages 105-115, February.
    6. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    7. Renato de Matta & Vernon Ning Hsu & Timothy J. Lowe, 1999. "Capacitated selection problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 19-37, February.
    8. Yves Crama & Joris van de Klundert, 1999. "Worst‐case performance of approximation algorithms for tool management problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 445-462, August.
    9. Catanzaro, Daniele & Gouveia, Luis & Labbé, Martine, 2015. "Improved integer linear programming formulations for the job Sequencing and tool Switching Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 766-777.
    10. Akhundov, Najmaddin & Ostrowski, James, 2024. "Exploiting symmetry for the job sequencing and tool switching problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 976-987.
    11. Christopher S. Tang, 2017. "OM Forum—Three Simple Approaches for Young Scholars to Identify Relevant and Novel Research Topics in Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 338-346, July.
    12. Nagraj Balakrishnan & Amiya K. Chakravarty, 2001. "Opportunistic retooling of a flexible machine subject to failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(1), pages 79-97, February.
    13. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    14. Dang, Quang-Vinh & van Diessen, Thijs & Martagan, Tugce & Adan, Ivo, 2021. "A matheuristic for parallel machine scheduling with tool replacements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 640-660.
    15. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    16. Atan, Tankut S. & Pandit, Ram, 1996. "Auxiliary tool allocation in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 642-659, March.
    17. Khadija Hadj Salem & Vincent Jost & Yann Kieffer & Luc Libralesso & Stéphane Mancini, 2022. "Minimizing makespan under data prefetching constraints for embedded vision systems: a study of optimization methods and their performance," Operational Research, Springer, vol. 22(3), pages 1639-1673, July.
    18. Chakravarty, Amiya K. & Balakrishnan, Nagraj, 1995. "Impact of job-sequence on the down-time of a deteriorating flexible machine," European Journal of Operational Research, Elsevier, vol. 87(2), pages 299-315, December.
    19. Akturk, M. Selim & Avci, Selcuk, 1996. "Tool allocation and machining conditions optimization for CNC machines," European Journal of Operational Research, Elsevier, vol. 94(2), pages 335-348, October.
    20. Raduly-Baka, Csaba & Nevalainen, Olli S., 2015. "The modular tool switching problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 100-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:1003-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.