IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i2p395-411.html
   My bibliography  Save this article

Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping

Author

Listed:
  • Sinha, Ankur
  • Malo, Pekka
  • Deb, Kalyanmoy

Abstract

Bilevel optimization problems are a class of challenging optimization problems, which contain two levels of optimization tasks. In these problems, the optimal solutions to the lower level problem become possible feasible candidates to the upper level problem. Such a requirement makes the optimization problem difficult to solve, and has kept the researchers busy towards devising methodologies, which can efficiently handle the problem. Despite the efforts, there hardly exists any effective methodology, which is capable of handling a complex bilevel problem. In this paper, we introduce bilevel evolutionary algorithm based on quadratic approximations (BLEAQ) of optimal lower level variables with respect to the upper level variables. The approach is capable of handling bilevel problems with different kinds of complexities in relatively smaller number of function evaluations. Ideas from classical optimization have been hybridized with evolutionary methods to generate an efficient optimization algorithm for a wide class of bilevel problems. The performance of the algorithm has been evaluated on two sets of test problems. The first set is a recently proposed SMD test set, which contains problems with controllable complexities, and the second set contains standard test problems collected from the literature. The proposed method has been compared against three benchmarks, and the performance gain is observed to be significant. The codes related to the paper may be accessed from the website http://bilevel.org.

Suggested Citation

  • Sinha, Ankur & Malo, Pekka & Deb, Kalyanmoy, 2017. "Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping," European Journal of Operational Research, Elsevier, vol. 257(2), pages 395-411.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:395-411
    DOI: 10.1016/j.ejor.2016.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    2. Calvete, Herminia I. & Gale, Carmen & Mateo, Pedro M., 2008. "A new approach for solving linear bilevel problems using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 188(1), pages 14-28, July.
    3. Yuping Wang & Hong Li & Chuangyin Dang, 2011. "A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 618-629, November.
    4. Cecchini, Mark & Ecker, Joseph & Kupferschmid, Michael & Leitch, Robert, 2013. "Solving nonlinear principal-agent problems using bilevel programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 364-373.
    5. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    6. C. Kirjner-Neto & E. Polak & A. Der Kiureghian, 1998. "An Outer Approximations Approach to Reliability-Based Optimal Design of Structures," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 1-16, July.
    7. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    8. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jayaswal, Sachin & Sinha, Ankur, 2022. "Bilevel Optimization: Applications, Models and Solution Approaches," IIMA Working Papers WP 2022-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Adejuyigbe O. Fajemisin & Laura Climent & Steven D. Prestwich, 2021. "An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 665-692, September.
    3. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    5. Grzegorz Sroka & Mariusz Oszust, 2021. "Approximation of the Constant in a Markov-Type Inequality on a Simplex Using Meta-Heuristics," Mathematics, MDPI, vol. 9(3), pages 1-10, January.
    6. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    2. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    3. Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
    4. Ashenafi Woldemariam & Semu Kassa, 2015. "Systematic evolutionary algorithm for general multilevel Stackelberg problems with bounded decision variables (SEAMSP)," Annals of Operations Research, Springer, vol. 229(1), pages 771-790, June.
    5. Zhao, Laijun & Li, Changmin & Huang, Rongbing & Si, Steven & Xue, Jian & Huang, Wei & Hu, Yue, 2013. "Harmonizing model with transfer tax on water pollution across regional boundaries in a China’s lake basin," European Journal of Operational Research, Elsevier, vol. 225(2), pages 377-382.
    6. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    7. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    8. Páez-Pérez, David & Sánchez-Silva, Mauricio, 2016. "A dynamic principal-agent framework for modeling the performance of infrastructure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 576-594.
    9. Budnitzki, Alina, 2014. "Computation of the optimal tolls on the traffic network," European Journal of Operational Research, Elsevier, vol. 235(1), pages 247-251.
    10. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    11. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.
    12. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    13. Calvete, Herminia I. & Galé, Carmen, 2011. "On linear bilevel problems with multiple objectives at the lower level," Omega, Elsevier, vol. 39(1), pages 33-40, January.
    14. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    15. Chen, Xiaojing & Li, Feng & Jiang, Jiehui & Jia, Bin & Lim, Andrew & Wu, Jianjun, 2022. "Data-driven optimization: A flexible route pricing method for Non-Truck Operating Common Carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    16. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    17. Yemshanov, Denys & Haight, Robert G. & MacQuarrie, Chris J.K. & Simpson, Mackenzie & Koch, Frank H. & Ryan, Kathleen & Bullas-Appleton, Erin, 2022. "Hierarchical governance in invasive species survey campaigns," Ecological Economics, Elsevier, vol. 201(C).
    18. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    19. Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
    20. Robbins, Matthew J. & Lunday, Brian J., 2016. "A bilevel formulation of the pediatric vaccine pricing problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 634-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:395-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.