IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i1p246-256.html
   My bibliography  Save this article

Optimal control of a terror queue

Author

Listed:
  • Seidl, Andrea
  • Kaplan, Edward H.
  • Caulkins, Jonathan P.
  • Wrzaczek, Stefan
  • Feichtinger, Gustav

Abstract

The task of covert intelligence agents is to detect and interdict terror plots. Kaplan (2010) treats terror plots as customers and intelligence agents as servers in a queuing model. We extend Kaplan’s insight to a dynamic model that analyzes the inter-temporal trade-off between damage caused by terror attacks and prevention costs to address the question of how many agents to optimally assign to such counter-terror measures. We compare scenarios which differ with respect to the extent of the initial terror threat and study the qualitative robustness of the optimal solution. We show that in general, the optimal number of agents is not simply proportional to the number of undetected plots. We also show that while it is sensible to deploy many agents when terrorists are moderately efficient in their ability to mount attacks, relatively few agents should be deployed if terrorists are inefficient (giving agents many opportunities for detection), or if terrorists are highly efficient (in which case agents become relatively ineffective). Furthermore, we analyze the implications of a policy that constraints the number of successful terror attacks to never increase. We find that the inclusion of a constraint preventing one of the state variables to grow leads to a continuum of steady states, some which are much more costly to society than the more forward-looking optimal policy that temporarily allows the number of terror attacks to increase.

Suggested Citation

  • Seidl, Andrea & Kaplan, Edward H. & Caulkins, Jonathan P. & Wrzaczek, Stefan & Feichtinger, Gustav, 2016. "Optimal control of a terror queue," European Journal of Operational Research, Elsevier, vol. 248(1), pages 246-256.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:1:p:246-256
    DOI: 10.1016/j.ejor.2015.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keohane, Nathaniel O & Zeckhauser, Richard J, 2003. "The Ecology of Terror Defense," Journal of Risk and Uncertainty, Springer, vol. 26(2-3), pages 201-229, March-May.
    2. Doris A. Behrens & Jonathan P. Caulkins & Gernot Tragler & Gustav Feichtinger, 2000. "Optimal Control of Drug Epidemics: Prevent and Treat---But Not at the Same Time?," Management Science, INFORMS, vol. 46(3), pages 333-347, March.
    3. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    4. Kaplan, Edward H., 2013. "Staffing models for covert counterterrorism agencies," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 2-8.
    5. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    6. Gernot Tragler & Jonathan P. Caulkins & Gustav Feichtinger, 2001. "Optimal Dynamic Allocation of Treatment and Enforcement in Illicit Drug Control," Operations Research, INFORMS, vol. 49(3), pages 352-362, June.
    7. Zhuang, Jun & Bier, Vicki M. & Alagoz, Oguzhan, 2010. "Modeling secrecy and deception in a multiple-period attacker-defender signaling game," European Journal of Operational Research, Elsevier, vol. 203(2), pages 409-418, June.
    8. Moshe Kress & Roberto Szechtman, 2009. "Why Defeating Insurgencies Is Hard: The Effect of Intelligence in Counterinsurgency Operations---A Best-Case Scenario," Operations Research, INFORMS, vol. 57(3), pages 578-585, June.
    9. Edward H. Kaplan, 2015. "Socially efficient detection of terror plots," Oxford Economic Papers, Oxford University Press, vol. 67(1), pages 104-115.
    10. G. Feichtinger & A. J. Novak, 2008. "Terror and Counterterror Operations: Differential Game with Cyclical Nash Solution," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 541-556, December.
    11. Edward H. Kaplan & Moshe Kress & Roberto Szechtman, 2010. "Confronting Entrenched Insurgents," Operations Research, INFORMS, vol. 58(2), pages 329-341, April.
    12. repec:reg:rpubli:282 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    2. Ebrahimnejad, Sadoullah & khanbaba, Amirhossein & Samimi, Sina, 2021. "Development of an Input-Output Model Considering Simultaneous Effect of Risks in Infrastructure under Dynamic Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Jaspersen, Johannes G. & Montibeller, Gilberto, 2020. "On the learning patterns and adaptive behavior of terrorist organizations," European Journal of Operational Research, Elsevier, vol. 282(1), pages 221-234.
    4. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    5. Liu, Zhongyi & Liu, Jingchen & Zhai, Xin & Wang, Guanying, 2019. "Police staffing and workload assignment in law enforcement using multi-server queueing models," European Journal of Operational Research, Elsevier, vol. 276(2), pages 614-625.
    6. Konrad, Renata A. & Trapp, Andrew C. & Palmbach, Timothy M. & Blom, Jeffrey S., 2017. "Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications," European Journal of Operational Research, Elsevier, vol. 259(2), pages 733-745.
    7. Bayón, L. & Fortuny Ayuso, P. & García-Nieto, P.J. & Grau, J.M. & Ruiz, M.M., 2019. "Optimal control of counter-terrorism tactics," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 477-491.
    8. Stefan Wrzaczek & Edward H. Kaplan & Jonathan P. Caulkins & Andrea Seidl & Gustav Feichtinger, 2017. "Differential Terror Queue Games," Dynamic Games and Applications, Springer, vol. 7(4), pages 578-593, December.
    9. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    10. Hamid Mohtadi & Bryan S. Weber, 2021. "Catastrophe And Rational Policy: Case Of National Security," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 140-161, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    2. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    3. Stefan Wrzaczek & Edward H. Kaplan & Jonathan P. Caulkins & Andrea Seidl & Gustav Feichtinger, 2017. "Differential Terror Queue Games," Dynamic Games and Applications, Springer, vol. 7(4), pages 578-593, December.
    4. Xing Gao & Weijun Zhong & Shue Mei, 2013. "Information Security Investment When Hackers Disseminate Knowledge," Decision Analysis, INFORMS, vol. 10(4), pages 352-368, December.
    5. Opher Baron & Oded Berman & Arieh Gavious, 2018. "A Game Between a Terrorist and a Passive Defender," Production and Operations Management, Production and Operations Management Society, vol. 27(3), pages 433-457, March.
    6. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    7. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    8. Bertrand Crettez & Naila Hayek, 2014. "Terrorists’ Eradication Versus Perpetual Terror War," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 679-702, February.
    9. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    10. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    11. Hausken, Kjell & Bier, Vicki M., 2011. "Defending against multiple different attackers," European Journal of Operational Research, Elsevier, vol. 211(2), pages 370-384, June.
    12. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    13. Timothy Mathews & Anton D. Lowenberg, 2012. "The Interdependence Between Homeland Security Efforts of a State and a Terrorist’s Choice of Attack," Conflict Management and Peace Science, Peace Science Society (International), vol. 29(2), pages 195-218, April.
    14. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    15. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    16. A. J. Novak & G. Feichtinger & G. Leitmann, 2010. "A Differential Game Related to Terrorism: Nash and Stackelberg Strategies," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 533-555, March.
    17. Liang, Liang & Chen, Jingxian & Siqueira, Kevin, 2020. "Revenge or continued attack and defense in defender–attacker conflicts," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1180-1190.
    18. Andrew Samuel & Seth D. Guikema, 2012. "Resource Allocation for Homeland Defense: Dealing with the Team Effect," Decision Analysis, INFORMS, vol. 9(3), pages 238-252, September.
    19. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    20. Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:1:p:246-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.