IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i2p413-420.html
   My bibliography  Save this article

On heuristic solutions for the stochastic flowshop scheduling problem

Author

Listed:
  • Framinan, Jose M.
  • Perez-Gonzalez, Paz

Abstract

We address the problem of scheduling jobs in a permutation flowshop when their processing times adopt a given distribution (stochastic flowshop scheduling problem) with the objective of minimization of the expected makespan. For this problem, optimal solutions exist only for very specific cases. Consequently, some heuristics have been proposed in the literature, all of them with similar performance. In our paper, we first focus on the critical issue of estimating the expected makespan of a sequence and found that, for instances with a medium/large variability (expressed as the coefficient of variation of the processing times of the jobs), the number of samples or simulation runs usually employed in the literature may not be sufficient to derive robust conclusions with respect to the performance of the different heuristics. We thus propose a procedure with a variable number of iterations that ensures that the percentage error in the estimation of the expected makespan is bounded with a very high probability. Using this procedure, we test the main heuristics proposed in the literature and find significant differences in their performance, in contrast with existing studies. We also find that the deterministic counterpart of the most efficient heuristic for the stochastic problem performs extremely well for most settings, which indicates that, in some cases, solving the deterministic version of the problem may produce competitive solutions for the stochastic counterpart.

Suggested Citation

  • Framinan, Jose M. & Perez-Gonzalez, Paz, 2015. "On heuristic solutions for the stochastic flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 413-420.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:2:p:413-420
    DOI: 10.1016/j.ejor.2015.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715003781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    2. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    3. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    4. Portougal, Victor & Trietsch, Dan, 2006. "Johnson's problem with stochastic processing times and optimal service level," European Journal of Operational Research, Elsevier, vol. 169(3), pages 751-760, March.
    5. Baker, Kenneth R. & Altheimer, Dominik, 2012. "Heuristic solution methods for the stochastic flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(1), pages 172-177.
    6. Gourgand, Michel & Grangeon, Nathalie & Norre, Sylvie, 2003. "A contribution to the stochastic flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 415-433, December.
    7. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    8. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    9. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2006. "A heuristic for minimizing the expected makespan in two-machine flow shops with consistent coefficients of variation," European Journal of Operational Research, Elsevier, vol. 169(3), pages 742-750, March.
    10. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    2. Guhlich, Hendrik & Fleischmann, Moritz & Mönch, Lars & Stolletz, Raik, 2018. "A clearing function based bid-price approach to integrated order acceptance and release decisions," European Journal of Operational Research, Elsevier, vol. 268(1), pages 243-254.
    3. Levorato, Mario & Figueiredo, Rosa & Frota, Yuri, 2022. "Exact solutions for the two-machine robust flow shop with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 300(1), pages 46-57.
    4. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, Kenneth R. & Altheimer, Dominik, 2012. "Heuristic solution methods for the stochastic flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(1), pages 172-177.
    2. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    3. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    4. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    5. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    6. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    7. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    8. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    9. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    10. Angel A. Juan & Helena Ramalhinho-Lourenço & Manuel Mateo & Quim Castellà & Barry B. Barrios, 2012. "ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem," Economics Working Papers 1319, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Mostafa Khatami & Seyed Hessameddin Zegordi, 2017. "Coordinative production and maintenance scheduling problem with flexible maintenance time intervals," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 857-867, April.
    12. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    13. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    14. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    15. Theodor Freiheit & Wei Li, 2017. "The effect of work content imbalance and its interaction with scheduling method on sequential flow line performance," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2791-2805, May.
    16. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    17. Lobo, Fernando G. & Bazargani, Mosab & Burke, Edmund K., 2020. "A cutoff time strategy based on the coupon collector’s problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 101-114.
    18. Liu, Weibo & Jin, Yan & Price, Mark, 2017. "A new improved NEH heuristic for permutation flowshop scheduling problems," International Journal of Production Economics, Elsevier, vol. 193(C), pages 21-30.
    19. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    20. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:2:p:413-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.