IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v241y2015i3p806-814.html
   My bibliography  Save this article

Penalty functions based upon a general class of restricted dissimilarity functions

Author

Listed:
  • Ricci, Roberto Ghiselli

Abstract

In this paper the notion of restricted dissimilarity function is discussed and some general results are shown. The relation between the concepts of restricted dissimilarity function and penalty function is presented. A specific model of construction of penalty functions by means of a wide class of restricted dissimilarity functions based upon automorphisms of the unit interval is studied. A characterization theorem of the automorphisms which give rise to two-dimensional penalty functions is proposed. A generalization of the previous theorem to any dimension n > 2 is also provided. Finally, a not convex example of generator of penalty functions of arbitrary dimension is illustrated.

Suggested Citation

  • Ricci, Roberto Ghiselli, 2015. "Penalty functions based upon a general class of restricted dissimilarity functions," European Journal of Operational Research, Elsevier, vol. 241(3), pages 806-814.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:806-814
    DOI: 10.1016/j.ejor.2014.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714007218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bustince, H. & Jurio, A. & Pradera, A. & Mesiar, R. & Beliakov, G., 2013. "Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions," European Journal of Operational Research, Elsevier, vol. 225(3), pages 472-478.
    2. Harvey J. Greenberg & William P. Pierskalla, 1971. "A Review of Quasi-Convex Functions," Operations Research, INFORMS, vol. 19(7), pages 1553-1570, December.
    3. Mesiar, R., 2007. "Fuzzy set approach to the utility, preference relations, and aggregation operators," European Journal of Operational Research, Elsevier, vol. 176(1), pages 414-422, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kieran Donaghy, 2011. "Models of travel demand with endogenous preference change and heterogeneous agents," Journal of Geographical Systems, Springer, vol. 13(1), pages 17-30, March.
    2. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    3. de Hierro, A.F. Roldán López & Bustince, H. & Fernández, J. & Mesiar, R. & Roldán, C., 2018. "Two novel methodologies for considering aggregation functions by implicit equations and minimization problems," European Journal of Operational Research, Elsevier, vol. 270(2), pages 670-681.
    4. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    5. Kelin Luo & Yinfeng Xu & Bowen Zhang & Huili Zhang, 2018. "Creating an acceptable consensus ranking for group decision making," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 307-328, July.
    6. Gerchak, Yigal & Hassini, Elkafi & Ray, Saibal, 2002. "Capacity selection under uncertainty with ratio objectives," European Journal of Operational Research, Elsevier, vol. 143(1), pages 138-147, November.
    7. Gagolewski, Marek, 2015. "Spread measures and their relation to aggregation functions," European Journal of Operational Research, Elsevier, vol. 241(2), pages 469-477.
    8. Bustince, H. & Jurio, A. & Pradera, A. & Mesiar, R. & Beliakov, G., 2013. "Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions," European Journal of Operational Research, Elsevier, vol. 225(3), pages 472-478.
    9. Peláez, José Ignacio & Bernal, Rubén, 2016. "Selective majority additive ordered weighting averaging operatorAuthor-Name: Karanik, Marcelo," European Journal of Operational Research, Elsevier, vol. 250(3), pages 816-826.
    10. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    11. Jean-Paul Penot, 2015. "Projective dualities for quasiconvex problems," Journal of Global Optimization, Springer, vol. 62(3), pages 411-430, July.
    12. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    13. Wang Feng, 2019. "Aggregation Similarity Measure Based on Hesitant Fuzzy Closeness Degree and Its Application to Clustering Analysis," Journal of Systems Science and Information, De Gruyter, vol. 7(1), pages 70-89, February.
    14. Carlo Alberto Bernardi, 2020. "On the Extension of Continuous Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 421-430, November.
    15. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    16. Gao, Jianwei & Li, Ming & Liu, Huihui, 2015. "Generalized ordered weighted utility averaging-hyperbolic absolute risk aversion operators and their applications to group decision-making," European Journal of Operational Research, Elsevier, vol. 243(1), pages 258-270.
    17. Ramsharan Rangarajan, 2017. "On the resolution of certain discrete univariate max–min problems," Computational Optimization and Applications, Springer, vol. 68(1), pages 163-192, September.
    18. Javier Cabello S'anchez & Juan Antonio Fern'andez Torvisco & Mariano R. Arias, 2024. "TAC Method for Fitting Exponential Autoregressive Models and Others: Applications in Economy and Finance," Papers 2402.04138, arXiv.org.
    19. Larry Epstein & Massimo Marinacci, 2005. "Coarse Contingencies," RCER Working Papers 515, University of Rochester - Center for Economic Research (RCER).
    20. M.J. Penttinen, 2000. "Timber Harvesting with Variable Prices and Costs," Working Papers ir00045, International Institute for Applied Systems Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:806-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.