IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i3p786-793.html
   My bibliography  Save this article

Investment under duality risk measure

Author

Listed:
  • Xu, Zuo Quan

Abstract

One index satisfies the duality axiom if one agent, who is uniformly more risk-averse than another, accepts a gamble, the latter accepts any less risky gamble under the index. Aumann and Serrano (2008) show that only one index defined for so-called gambles satisfies the duality and positive homogeneity axioms. We call it a duality index. This paper extends the definition of duality index to all outcomes including all gambles, and considers a portfolio selection problem in a complete market, in which the agent’s target is to minimize the index of the utility of the relative investment outcome. By linking this problem to a series of Merton’s optimum consumption-like problems, the optimal solution is explicitly derived. It is shown that if the prior benchmark level is too high (which can be verified), then the investment risk will be beyond any agent’s risk tolerance. If the benchmark level is reasonable, then the optimal solution will be the same as that of one of the Merton’s series problems, but with a particular value of absolute risk aversion, which is given by an explicit algebraic equation as a part of the optimal solution. According to our result, it is riskier to achieve the same surplus profit in a stable market than in a less-stable market, which is consistent with the common financial intuition.

Suggested Citation

  • Xu, Zuo Quan, 2014. "Investment under duality risk measure," European Journal of Operational Research, Elsevier, vol. 239(3), pages 786-793.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:3:p:786-793
    DOI: 10.1016/j.ejor.2014.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714005256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    2. Diamond, Peter A. & Stiglitz, Joseph E., 1974. "Increases in risk and in risk aversion," Journal of Economic Theory, Elsevier, vol. 8(3), pages 337-360, July.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2008. "A Convex Stochastic Optimization Problem Arising From Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 171-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo Quan Xu, 2014. "Investment under Duality Risk Measure," Papers 1406.4222, arXiv.org.
    2. Hlouskova, Jaroslava & Fortin, Ines & Tsigaris, Panagiotis, 2019. "The consumption–investment decision of a prospect theory household: A two-period model with an endogenous second period reference level," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 93-108.
    3. Bernard, Carole & Chen, Jit Seng & Vanduffel, Steven, 2015. "Rationalizing investors’ choices," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 10-23.
    4. Abdellaoui, Mohammed & Bleichrodt, Han, 2007. "Eliciting Gul's theory of disappointment aversion by the tradeoff method," Journal of Economic Psychology, Elsevier, vol. 28(6), pages 631-645, December.
    5. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    6. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    7. Levy, Moshe, 2022. "An inter-temporal CAPM based on First order Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 298(2), pages 734-739.
    8. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    9. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    10. Paolo Guasoni & Gur Huberman & Dan Ren, 2020. "Shortfall aversion," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 869-920, July.
    11. Laurentiu Droj & Elena - Ana Iancu (Nechita) & Ioana Florina Popovici - Coita, 2016. "Premises Of Behavioral Finance In Rational Decision-Making," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 671-681, July.
    12. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    13. Pfiffelmann, Marie & Roger, Tristan & Bourachnikova, Olga, 2016. "When Behavioral Portfolio Theory meets Markowitz theory," Economic Modelling, Elsevier, vol. 53(C), pages 419-435.
    14. Xiaosheng Mu & Luciano Pomatto & Philipp Strack & Omer Tamuz, 2020. "Background risk and small-stakes risk aversion," Papers 2010.08033, arXiv.org, revised Mar 2021.
    15. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    16. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    17. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    18. David Blake & Tom Boardman, 2014. "Spend More Today Safely: Using Behavioral Economics to Improve Retirement Expenditure Decisions With SPEEDOMETER Plans," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 17(1), pages 83-112, March.
    19. Grauer, Robert R., 2013. "Limiting losses may be injurious to your wealth," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5088-5100.
    20. Fortin, Ines & Hlouskova, Jaroslava & Tsigaris, Panagiotis, 2016. "The Consumption-Investment Decision of a Prospect Theory Household," Economics Series 322, Institute for Advanced Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:3:p:786-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.