IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v212y2011i3p455-463.html
   My bibliography  Save this article

The constrained compartmentalized knapsack problem: mathematical models and solution methods

Author

Listed:
  • Leão, Aline A.S.
  • Santos, Maristela O.
  • Hoto, Robinson
  • Arenales, Marcos N.

Abstract

The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort.

Suggested Citation

  • Leão, Aline A.S. & Santos, Maristela O. & Hoto, Robinson & Arenales, Marcos N., 2011. "The constrained compartmentalized knapsack problem: mathematical models and solution methods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 455-463, August.
  • Handle: RePEc:eee:ejores:v:212:y:2011:i:3:p:455-463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00147-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Zak, Eugene J., 2002. "Modeling multistage cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 313-327, September.
    3. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    4. Hoto, Robinson & Arenales, Marcos & Maculan, Nelson, 2007. "The one dimensional Compartmentalised Knapsack Problem: A case study," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1183-1195, December.
    5. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    6. Haessler, Robert W, 1979. "Solving the two-stage cutting stock problem," Omega, Elsevier, vol. 7(2), pages 145-151.
    7. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    8. Valerio de Carvalho, J. M. & Guimaraes Rodrigues, A. J., 1995. "An LP-based approach to a two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 84(3), pages 580-589, August.
    9. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    10. Robert W. Haessler, 1971. "A Heuristic Programming Solution to a Nonlinear Cutting Stock Problem," Management Science, INFORMS, vol. 17(12), pages 793-802, August.
    11. David Pisinger, 1999. "Core Problems in Knapsack Algorithms," Operations Research, INFORMS, vol. 47(4), pages 570-575, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.
    2. Guazzelli, Cauê Sauter & Cunha, Claudio B., 2018. "Exploring K-best solutions to enrich network design decision-making," Omega, Elsevier, vol. 78(C), pages 139-164.
    3. García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
    4. Luka Tomat & Mirko Gradišar, 2017. "One-dimensional stock cutting: optimization of usable leftovers in consecutive orders," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 473-489, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.
    2. Zak, Eugene J., 2002. "Modeling multistage cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 313-327, September.
    3. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    4. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    5. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    6. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    7. Tao Wu & Kerem Akartunal? & Raf Jans & Zhe Liang, 2017. "Progressive Selection Method for the Coupled Lot-Sizing and Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 523-543, August.
    8. Hoto, Robinson & Arenales, Marcos & Maculan, Nelson, 2007. "The one dimensional Compartmentalised Knapsack Problem: A case study," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1183-1195, December.
    9. Nonas, Sigrid Lise & Thorstenson, Anders, 2000. "A combined cutting-stock and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 327-342, January.
    10. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    11. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    12. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    13. Herbert Meyr & Mirko Kiel, 2022. "Minimizing setups and waste when printing labels of consumer goods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 733-761, September.
    14. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    15. C Alves & J M Valério de Carvalho, 2008. "New integer programming formulations and an exact algorithm for the ordered cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1520-1531, November.
    16. Wuttke, David A. & Heese, H. Sebastian, 2018. "Two-dimensional cutting stock problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(1), pages 303-315.
    17. Furini, Fabio & Malaguti, Enrico & Medina Durán, Rosa & Persiani, Alfredo & Toth, Paolo, 2012. "A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size," European Journal of Operational Research, Elsevier, vol. 218(1), pages 251-260.
    18. Syam Menon & Rakesh Gupta, 2008. "Optimal Broadcast Scheduling in Packet Radio Networks via Branch and Price," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 391-399, August.
    19. Adejuyigbe O. Fajemisin & Steven D. Prestwich & Laura Climent, 2023. "Cutting uncertain stock and vehicle routing in a sustainability forestry harvesting problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 139-164, April.
    20. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:212:y:2011:i:3:p:455-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.