IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i1p61-76.html
   My bibliography  Save this article

A modified variable neighborhood search for the discrete ordered median problem

Author

Listed:
  • Puerto, Justo
  • Pérez-Brito, Dionisio
  • García-González, Carlos G.

Abstract

This paper presents a modified Variable Neighborhood Search (VNS) heuristic algorithm for solving the Discrete Ordered Median Problem (DOMP). This heuristic is based on new neighborhoods’ structures that allow an efficient encoding of the solutions of the DOMP avoiding sorting in the evaluation of the objective function at each considered solution. The algorithm is based on a data structure, computed in preprocessing, that organizes the minimal necessary information to update and evaluate solutions in linear time without sorting. In order to investigate the performance, the new algorithm is compared with other heuristic algorithms previously available in the literature for solving DOMP. We report on some computational experiments based on the well-known N-median instances of the ORLIB with up to 900 nodes. The obtained results are comparable or superior to existing algorithms in the literature, both in running times and number of best solutions found.

Suggested Citation

  • Puerto, Justo & Pérez-Brito, Dionisio & García-González, Carlos G., 2014. "A modified variable neighborhood search for the discrete ordered median problem," European Journal of Operational Research, Elsevier, vol. 234(1), pages 61-76.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:1:p:61-76
    DOI: 10.1016/j.ejor.2013.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanimirovic, Zorica & Kratica, Jozef & Dugosija, Djordje, 2007. "Genetic algorithms for solving the discrete ordered median problem," European Journal of Operational Research, Elsevier, vol. 182(3), pages 983-1001, November.
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    3. Kalcsics, Jörg & Nickel, Stefan & Puerto, Justo & Rodríguez-Chía, Antonio M., 2010. "Distribution systems design with role dependent objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 491-501, April.
    4. Jörg Kalcsics & Stefan Nickel & Justo Puerto & Antonio Rodríguez-Chía, 2010. "The ordered capacitated facility location problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 203-222, July.
    5. Alfredo Marín & Stefan Nickel & Sebastian Velten, 2010. "An extended covering model for flexible discrete and equity location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 125-163, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Fan & Yi Wang & Tongzhu Liu & Guixian Tong, 2020. "A patient flow scheduling problem in ophthalmology clinic solved by the hybrid EDA–VNS algorithm," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 547-580, February.
    2. Olender, Paweł & Ogryczak, Włodzimierz, 2019. "A revised Variable Neighborhood Search for the Discrete Ordered Median Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 445-465.
    3. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    4. Blanco, Víctor & Puerto, Justo & Ben-Ali, Safae El-Haj, 2016. "Continuous multifacility ordered median location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 56-64.
    5. Juana L. Redondo & Alfredo Marín & Pilar M. Ortigosa, 2016. "A parallelized Lagrangean relaxation approach for the discrete ordered median problem," Annals of Operations Research, Springer, vol. 246(1), pages 253-272, November.
    6. Martínez-Merino, Luisa I. & Albareda-Sambola, Maria & Rodríguez-Chía, Antonio M., 2017. "The probabilistic p-center problem: Planning service for potential customers," European Journal of Operational Research, Elsevier, vol. 262(2), pages 509-520.
    7. Enrique Domínguez & Alfredo Marín, 2020. "Discrete ordered median problem with induced order," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 793-813, October.
    8. Nickel, Stefan & Velten, Sebastian, 2017. "Optimization problems with flexible objectives: A general modeling approach and applications," European Journal of Operational Research, Elsevier, vol. 258(1), pages 79-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Víctor Blanco, 2019. "Ordered p-median problems with neighbourhoods," Computational Optimization and Applications, Springer, vol. 73(2), pages 603-645, June.
    2. J. Puerto, 2020. "An exact completely positive programming formulation for the discrete ordered median problem: an extended version," Journal of Global Optimization, Springer, vol. 77(2), pages 341-359, June.
    3. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    4. Samuel Deleplanque & Martine Labbé & Diego Ponce & Justo Puerto, 2020. "A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 582-599, July.
    5. Enrique Domínguez & Alfredo Marín, 2020. "Discrete ordered median problem with induced order," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 793-813, October.
    6. Nickel, Stefan & Velten, Sebastian, 2017. "Optimization problems with flexible objectives: A general modeling approach and applications," European Journal of Operational Research, Elsevier, vol. 258(1), pages 79-88.
    7. Jesús Sánchez-Oro & Ana D. López-Sánchez & Anna Martínez-Gavara & Alfredo G. Hernández-Díaz & Abraham Duarte, 2021. "A Hybrid Strategic Oscillation with Path Relinking Algorithm for the Multiobjective k -Balanced Center Location Problem," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    8. Marín, Alfredo & Ponce, Diego & Puerto, Justo, 2020. "A fresh view on the Discrete Ordered Median Problem based on partial monotonicity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 839-848.
    9. Marín, Alfredo, 2011. "The discrete facility location problem with balanced allocation of customers," European Journal of Operational Research, Elsevier, vol. 210(1), pages 27-38, April.
    10. Olender, Paweł & Ogryczak, Włodzimierz, 2019. "A revised Variable Neighborhood Search for the Discrete Ordered Median Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 445-465.
    11. Luisa I. Martínez-Merino & Diego Ponce & Justo Puerto, 2023. "Constraint relaxation for the discrete ordered median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 538-561, October.
    12. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    14. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    15. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    16. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    17. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    18. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    19. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    20. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:1:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.