IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i2p417-420.html
   My bibliography  Save this article

Acceptable consistency of aggregated comparison matrices in analytic hierarchy process

Author

Listed:
  • Grošelj, Petra
  • Zadnik Stirn, Lidija

Abstract

The analytic hierarchy process is a method for solving multiple criteria decision problems, as well as group decision making. The weighted geometric mean method is appropriate when aggregation of individual judgements is used. This paper presents a new proof which confirms the property that if the comparison matrices of all decision makers are of acceptable consistency, then the weighted geometric mean complex judgement matrix (WGMCJM) also is of acceptable consistency. This property was presented and first proved by Xu (2000), but Lin et al. (2008) rejected the proof. We also discuss under what conditions the WGMCJM is of acceptable consistency when not all comparison matrices of decision makers are of acceptable consistency. For this case we determine the sufficient condition for the WGMCJM to be of acceptable consistency and provide numerical examples. For a special case of two decision makers with 3×3 comparison matrices we find out some additional conditions for the WGMCJM to be of acceptable consistency.

Suggested Citation

  • Grošelj, Petra & Zadnik Stirn, Lidija, 2012. "Acceptable consistency of aggregated comparison matrices in analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 223(2), pages 417-420.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:417-420
    DOI: 10.1016/j.ejor.2012.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cortés-Aldana, Félix Antonio & García-Melón, Mónica & Fernández-de-Lucio, Ignacio & Aragonés-Beltrán, Pablo & Poveda-Bautista, Rocío, 2009. "University objectives and socioeconomic results: A multicriteria measuring of alignment," European Journal of Operational Research, Elsevier, vol. 199(3), pages 811-822, December.
    2. Altuzarra, Alfredo & Moreno-Jimenez, Jose Maria & Salvador, Manuel, 2007. "A Bayesian priorization procedure for AHP-group decision making," European Journal of Operational Research, Elsevier, vol. 182(1), pages 367-382, October.
    3. Lin, Robert & Lin, Jennifer Shu-Jen & Chang, Jason & Tang, Didos & Chao, Henry & Julian, Peter C, 2008. "Note on group consistency in analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 190(3), pages 672-678, November.
    4. Xu, Z., 2000. "On consistency of the weighted geometric mean complex judgement matrix in AHP," European Journal of Operational Research, Elsevier, vol. 126(3), pages 683-687, November.
    5. Aczel, J. & Alsina, C., 1986. "On synthesis of judgements," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 333-339.
    6. L. Sun & B. S. Greenberg, 2006. "Multicriteria Group Decision Making: Optimal Priority Synthesis from Pairwise Comparisons," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 317-339, August.
    7. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    8. Rabelo, Luis & Eskandari, Hamidreza & Shaalan, Tarek & Helal, Magdy, 2007. "Value chain analysis using hybrid simulation and AHP," International Journal of Production Economics, Elsevier, vol. 105(2), pages 536-547, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Martin de Alcântara Dias & Cynthia Thamires da Silva & Rui Esteves Araújo & Ricardo de Castro & Eduardo Lorenzetti Pellini & Cláudio Pinto & Armando Antônio Maria Laganá, 2022. "An Analytic Hierarchy Process for Selecting Battery Equalization Methods," Energies, MDPI, vol. 15(7), pages 1-21, March.
    2. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    3. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    4. Chiara D’Alpaos & Maria Rosa Valluzzi, 2020. "Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    5. Dong, Yucheng & Hong, Wei-Chiang & Xu, Yinfeng & Yu, Shui, 2013. "Numerical scales generated individually for analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 229(3), pages 654-662.
    6. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    7. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    8. Roberto Cervelló-Royo & Marina Segura & Regina García-Pérez & Baldomero Segura-García del Río, 2021. "An Analysis of Preferences in Housing Demand by Means of a Multicriteria Methodology (AHP). A More Sustainable Approach," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    9. Vijay Pereira & Umesh Bamel, 2023. "Charting the managerial and theoretical evolutionary path of AHP using thematic and systematic review: a decadal (2012–2021) study," Annals of Operations Research, Springer, vol. 326(2), pages 635-651, July.
    10. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    11. Marta Bottero & Chiara D’Alpaos & Alessia Marello, 2020. "An Application of the A’WOT Analysis for the Management of Cultural Heritage Assets: The Case of the Historical Farmhouses in the Aglié Castle (Turin)," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    12. Fontana, Veronika & Radtke, Anna & Bossi Fedrigotti, Valérie & Tappeiner, Ulrike & Tasser, Erich & Zerbe, Stefan & Buchholz, Thomas, 2013. "Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis," Ecological Economics, Elsevier, vol. 93(C), pages 128-136.
    13. Brunelli, Matteo & Fedrizzi, Michele, 2015. "Boundary properties of the inconsistency of pairwise comparisons in group decisions," European Journal of Operational Research, Elsevier, vol. 240(3), pages 765-773.
    14. Yeh, Chung-Hsing & Xu, Yan, 2013. "Managing critical success strategies for an enterprise resource planning project," European Journal of Operational Research, Elsevier, vol. 230(3), pages 604-614.
    15. Rubina Canesi & Chiara D’Alpaos, 2024. "The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach," Land, MDPI, vol. 13(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    2. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    3. Petra Grošelj & Špela Pezdevšek Malovrh & Lidija Zadnik Stirn, 2011. "Methods based on data envelopment analysis for deriving group priorities in analytic hierarchy process," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 267-284, September.
    4. Brunelli, Matteo, 2019. "A study on the anonymity of pairwise comparisons in group decision making," European Journal of Operational Research, Elsevier, vol. 279(2), pages 502-510.
    5. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    6. Rabelo, Luis & Eskandari, Hamidreza & Shaalan, Tarek & Helal, Magdy, 2007. "Value chain analysis using hybrid simulation and AHP," International Journal of Production Economics, Elsevier, vol. 105(2), pages 536-547, February.
    7. S. Lipovetsky, 2009. "Global Priority Estimation in Multiperson Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 77-91, January.
    8. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    9. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    10. Aull-Hyde, Rhonda & Erdogan, Sevgi & Duke, Joshua M., 2006. "An experiment on the consistency of aggregated comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 171(1), pages 290-295, May.
    11. Hsu, David W.L. & Shen, Yung-Chi & Yuan, Benjamin J.C. & Chou, Chiyan James, 2015. "Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 25-39.
    12. Francisco J. André & Jorge A. Valenciano-Salazar, 2020. "Becoming Carbon Neutral in Costa Rica to Be More Sustainable: An AHP Approach," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    13. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2019. "AHP-Group Decision Making Based on Consistency," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    14. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    15. Jerónimo Aznar & Francisco Guijarro & José Moreno-Jiménez, 2011. "Mixed valuation methods: a combined AHP-GP procedure for individual and group multicriteria agricultural valuation," Annals of Operations Research, Springer, vol. 190(1), pages 221-238, October.
    16. Majid Mohammadi & Damian A. Tamburri & Jafar Rezaei, 2023. "Unveiling and Unraveling Aggregation and Dispersion Fallacies in Group MCDM," Group Decision and Negotiation, Springer, vol. 32(4), pages 779-806, August.
    17. Alexandra Tsioulou & Joanna Faure Walker & Dexter Sumaylo Lo & Rebekah Yore, 2021. "A method for determining the suitability of schools as evacuation shelters and aid distribution hubs following disasters: case study from Cagayan de Oro, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1835-1859, January.
    18. Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2022. "Identification of Homogeneous Groups of Actors in a Local AHP-Multiactor Context with a High Number of Decision-Makers: A Bayesian Stochastic Search," Mathematics, MDPI, vol. 10(3), pages 1-20, February.
    19. Gomez-Limon, J.A. & Atance, I., 2004. "Identification of public objectives related to agricultural sector support," Journal of Policy Modeling, Elsevier, vol. 26(8-9), pages 1045-1071, December.
    20. Manuel Salvador & Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez, 2015. "A Bayesian Approach to Maximising Inner Compatibility in AHP-Systemic Decision Making," Group Decision and Negotiation, Springer, vol. 24(4), pages 655-673, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:417-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.