IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v222y2012i3p508-522.html
   My bibliography  Save this article

Maintenance of a deteriorating single server system with Markovian arrivals and random shocks

Author

Listed:
  • Chakravarthy, Srinivas R.

Abstract

We consider a single server queue in which the arrivals occur according to a Markovian arrival process. The system is subject to external shocks causing the server to deteriorate and possibly fail. The maintenance of the server is provided either as a preventive one or for a complete failure so as to bring back to normal. Under the assumptions of Poisson shocks, exponential services and exponential maintenance with rates depending on the state of the server, and a general (discrete) probability distribution for the intensity of the shocks, the model is analyzed in steady-state. Some interesting theoretical results along with a few illustrative numerical examples are reported. An optimization problem involving various costs is studied numerically.

Suggested Citation

  • Chakravarthy, Srinivas R., 2012. "Maintenance of a deteriorating single server system with Markovian arrivals and random shocks," European Journal of Operational Research, Elsevier, vol. 222(3), pages 508-522.
  • Handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:508-522
    DOI: 10.1016/j.ejor.2012.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712003670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.
    2. Ahmadi, Reza & Newby, Martin, 2011. "Maintenance scheduling of a manufacturing system subject to deterioration," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1411-1420.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    5. Huang, Chun-Chen & Yuan, John, 2010. "A two-stage preventive maintenance policy for a multi-state deterioration system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1255-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Eloy Ruiz-Castro, 2015. "A preventive maintenance policy for a standby system subject to internal failures and external shocks with loss of units," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1600-1613, July.
    2. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    3. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    4. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    5. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    6. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    7. Levitin, Gregory & Finkelstein, Maxim, 2017. "Optimal backup in heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 336-344.
    8. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    9. Kevin Granville & Steve Drekic, 2021. "The unobserved waiting customer approximation," Queueing Systems: Theory and Applications, Springer, vol. 99(3), pages 345-396, December.
    10. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
    11. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    6. Olde Keizer, Minou & Teunter, Ruud, 2014. "Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system," Research Report 14033-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    7. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    8. A Grall & M Fouladirad, 2008. "Maintenance decision rule with embedded online Bayesian change detection for gradually non-stationary deteriorating systems," Journal of Risk and Reliability, , vol. 222(3), pages 359-369, September.
    9. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.
    10. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    11. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    12. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    13. Liu, Biyu & Pang, Jie & Yang, Haidong & Zhao, Yilin, 2024. "Optimal condition-based maintenance policy for leased equipment considering hybrid preventive maintenance and periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    15. Estelle Deloux & Yann Dijoux & Mitra Fouladirad, 2012. "Generalization of the proportional hazards model for maintenance modelling and optimization," Journal of Risk and Reliability, , vol. 226(5), pages 439-447, October.
    16. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    17. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    18. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2016. "Clustering condition-based maintenance for systems with redundancy and economic dependencies," European Journal of Operational Research, Elsevier, vol. 251(2), pages 531-540.
    19. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    20. E Deloux & B Castanier & C Bérenguer, 2008. "Maintenance policy for a deteriorating system evolving in a stressful environment," Journal of Risk and Reliability, , vol. 222(4), pages 613-622, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:508-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.