IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v221y2012i2p407-416.html
   My bibliography  Save this article

Robust ranking and portfolio optimization

Author

Listed:
  • Nguyen, Tri-Dung
  • Lo, Andrew W.

Abstract

The portfolio optimization problem has attracted researchers from many disciplines to resolve the issue of poor out-of-sample performance due to estimation errors in the expected returns. A practical method for portfolio construction is to use assets’ ordering information, expressed in the form of preferences over the stocks, instead of the exact expected returns. Due to the fact that the ranking itself is often described with uncertainty, we introduce a generic robust ranking model and apply it to portfolio optimization. In this problem, there are n objects whose ranking is in a discrete uncertainty set. We want to find a weight vector that maximizes some generic objective function for the worst realization of the ranking. This robust ranking problem is a mixed integer minimax problem and is very difficult to solve in general. To solve this robust ranking problem, we apply the constraint generation method, where constraints are efficiently generated by solving a network flow problem. For empirical tests, we use post-earnings-announcement drifts to obtain ranking uncertainty sets for the stocks in the DJIA index. We demonstrate that our robust portfolios produce smaller risk compared to their non-robust counterparts.

Suggested Citation

  • Nguyen, Tri-Dung & Lo, Andrew W., 2012. "Robust ranking and portfolio optimization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 407-416.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:2:p:407-416
    DOI: 10.1016/j.ejor.2012.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712002329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    4. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    5. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    6. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. Ball, R & Brown, P, 1968. "Empirical Evaluation Of Accounting Income Numbers," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 159-178.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre O. De souza & Tiago P. Filomena & João F. Caldeira & Denis Borenstein & Marcelo B. Righi, 2017. "Risk parity in the brazilian market," Economics Bulletin, AccessEcon, vol. 37(3), pages 1555-1566.
    2. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    3. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    5. Black, Geoffrey & Holley, Donald & Solan, David & Bergloff, Michael, 2014. "Fiscal and economic impacts of state incentives for wind energy development in the Western United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 136-144.
    6. Hossein Hashemi Doulabi & Patrick Jaillet & Gilles Pesant & Louis-Martin Rousseau, 2021. "Exploiting the Structure of Two-Stage Robust Optimization Models with Exponential Scenarios," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 143-162, January.
    7. Çela, Eranda & Hafner, Stephan & Mestel, Roland & Pferschy, Ulrich, 2021. "Mean-variance portfolio optimization based on ordinal information," Journal of Banking & Finance, Elsevier, vol. 122(C).
    8. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    9. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.
    10. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    4. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    5. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    7. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    8. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    9. Knoke, Thomas & Paul, Carola & Härtl, Fabian & Castro, Luz Maria & Calvas, Baltazar & Hildebrandt, Patrick, 2015. "Optimizing agricultural land-use portfolios with scarce data—A non-stochastic model," Ecological Economics, Elsevier, vol. 120(C), pages 250-259.
    10. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    11. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    12. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    13. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    14. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    15. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    16. Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
    17. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    18. Taufiq Choudhry & Ranadeva Jayasekera, 2015. "Level of efficiency in the UK equity market: empirical study of the effects of the global financial crisis," Review of Quantitative Finance and Accounting, Springer, vol. 44(2), pages 213-242, February.
    19. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    20. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:2:p:407-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.