IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i2p233-240.html
   My bibliography  Save this article

Operations research in the space industry

Author

Listed:
  • Fliege, Jörg
  • Kaparis, Konstantinos
  • Khosravi, Banafsheh

Abstract

Operations research techniques have been used in the space industry since its infancy, and various competing methods and codes, with widely varying characteristics, have been used over time. This survey is intended to give an overview of current application cases of different operations research techniques and methodologies in the domain of space engineering and space science.

Suggested Citation

  • Fliege, Jörg & Kaparis, Konstantinos & Khosravi, Banafsheh, 2012. "Operations research in the space industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 233-240.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:233-240
    DOI: 10.1016/j.ejor.2011.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711005649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Miele & M. W. Weeks & M. Ciarcià, 2007. "Optimal Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 353-376, March.
    2. H. J. Oberle & K. Taubert, 1997. "Existence and Multiple Solutions of the Minimum-Fuel Orbit Transfer Problem," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 243-262, November.
    3. Dinkelmann, M. & Wächter, M. & Sachs, G., 2000. "Modelling and simulation of unsteady heat transfer for aerospacecraft trajectory optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(4), pages 389-394.
    4. H. Baumann & H. J. Oberle, 2000. "Numerical Computation of Optimal Trajectories for Coplanar, Aeroassisted Orbital Transfer," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 457-479, December.
    5. Bianchessi, Nicola & Cordeau, Jean-Francois & Desrosiers, Jacques & Laporte, Gilbert & Raymond, Vincent, 2007. "A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites," European Journal of Operational Research, Elsevier, vol. 177(2), pages 750-762, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldana-Galván, I. & Catana-Salazar, J.C. & Díaz-Báñez, J.M. & Duque, F. & Fabila-Monroy, R. & Heredia, M.A. & Ramírez-Vigueras, A. & Urrutia, J., 2020. "On optimal coverage of a tree with multiple robots," European Journal of Operational Research, Elsevier, vol. 285(3), pages 844-852.
    2. Bernhard, Pierre & Deschamps, Marc & Zaccour, Georges, 2023. "Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1140-1157.
    3. Fakhri Noushabadi, M. & Assadian, N., 2012. "Optimal apogee burn time for low thrust spinning satellite in low altitude," European Journal of Operational Research, Elsevier, vol. 222(2), pages 386-391.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J.B. Caillau & J. Gergaud & J. Noailles, 2003. "3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 541-565, September.
    2. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    3. Shai Krigman & Tal Grinshpoun & Lihi Dery, 2024. "Scheduling of Earth observing satellites using distributed constraint optimization," Journal of Scheduling, Springer, vol. 27(5), pages 507-524, October.
    4. A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 2: Mathematical Programming Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 625-639, June.
    5. M. Cerf, 2013. "Multiple Space Debris Collecting Mission—Debris Selection and Trajectory Optimization," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 761-796, March.
    6. Fuyu Sun & Hua Wang, 2021. "Research on detection mission scheduling strategy for the LEO constellation to multiple targets," The Journal of Defense Modeling and Simulation, , vol. 18(2), pages 87-103, April.
    7. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    8. H. Baumann & H. J. Oberle, 2000. "Numerical Computation of Optimal Trajectories for Coplanar, Aeroassisted Orbital Transfer," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 457-479, December.
    9. Zhang Ye & Hu Xiaoxuan & Zhu Waiming & Jin Peng, 2018. "Solving the Observing and Downloading Integrated Scheduling Problem of Earth Observation Satellite with a Quantum Genetic Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 399-420, October.
    10. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.
    11. Y.-K. Chang & J. J. Nieto & W.-S. Li, 2009. "On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 431-442, March.
    12. Jing Yu & Jiawei Guo & Lining Xing & Yanjie Song & Zhaohui Liu, 2024. "Two-Stage Satellite Combined-Task Scheduling Based on Task Merging Mechanism," Mathematics, MDPI, vol. 12(19), pages 1-22, October.
    13. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    14. Bernhard, Pierre & Deschamps, Marc & Zaccour, Georges, 2023. "Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1140-1157.
    15. Xiao, Yiyong & Zhang, Siyue & Yang, Pei & You, Meng & Huang, Jiaoying, 2019. "A two-stage flow-shop scheme for the multi-satellite observation and data-downlink scheduling problem considering weather uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 263-275.
    16. Jingjing Zhang & Chenyang He & Yan Zhang & Xianjun Qi & Xi Yang, 2024. "CubeSat Mission Scheduling Method Considering Operational Reliability," Energies, MDPI, vol. 17(2), pages 1-16, January.
    17. Sandeep K. Singh & Brian D. Anderson & Ehsan Taheri & John L. Junkins, 2021. "Low-Thrust Transfers to Southern $$L_2$$ L 2 Near-Rectilinear Halo Orbits Facilitated by Invariant Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 517-544, December.
    18. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    19. Alex Elkjær Vasegaard & Ilkyeong Moon & Peter Nielsen & Subrata Saha, 2023. "Determining the pricing strategy for different preference structures for the earth observation satellite scheduling problem through simulation and VIKOR," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 945-973, September.
    20. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.