IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i3d10.1007_s10957-008-9356-8.html
   My bibliography  Save this article

Optimal Starting Conditions for the Rendezvous Maneuver, Part 2: Mathematical Programming Approach

Author

Listed:
  • A. Miele

    (Rice University)

  • M. Ciarcià

    (Rice University)

Abstract

In a companion paper (Part 1, J. Optim. Theory Appl. 137(3), [2008]), we determined the optimal starting conditions for the rendezvous maneuver using an optimal control approach. In this paper, we study the same problem with a mathematical programming approach. Specifically, we consider the relative motion between a target spacecraft in a circular orbit and a chaser spacecraft moving in its proximity as described by the Clohessy-Wiltshire equations. We consider the class of multiple-subarc trajectories characterized by constant thrust controls in each subarc. Under these conditions, the Clohessy-Wiltshire equations can be integrated in closed form and in turn this leads to optimization processes of the mathematical programming type. Within the above framework, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory.

Suggested Citation

  • A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 2: Mathematical Programming Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 625-639, June.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-008-9356-8
    DOI: 10.1007/s10957-008-9356-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9356-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9356-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Miele & M. W. Weeks & M. Ciarcià, 2007. "Optimal Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 353-376, March.
    2. A. Miele & M. Ciarcià & M. W. Weeks, 2007. "Guidance Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 377-400, March.
    3. A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 1: Optimal Control Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 593-624, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y.-K. Chang & J. J. Nieto & W.-S. Li, 2009. "On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 431-442, March.
    2. A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 1: Optimal Control Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 593-624, June.
    3. Fliege, Jörg & Kaparis, Konstantinos & Khosravi, Banafsheh, 2012. "Operations research in the space industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 233-240.
    4. A. Miele & M. W. Weeks & M. Ciarcià, 2007. "Optimal Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 353-376, March.
    5. Sandeep K. Singh & Brian D. Anderson & Ehsan Taheri & John L. Junkins, 2021. "Low-Thrust Transfers to Southern $$L_2$$ L 2 Near-Rectilinear Halo Orbits Facilitated by Invariant Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 517-544, December.
    6. A. Miele & M. Ciarcià & M. W. Weeks, 2007. "Guidance Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 377-400, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-008-9356-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.