IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v215y2011i3p539-550.html
   My bibliography  Save this article

A mathematical programming approach to the computation of the omega invariant of a numerical semigroup

Author

Listed:
  • Blanco, Víctor

Abstract

In this paper we present a mathematical programming formulation for the [omega]-invariant of a numerical semigroup for each of its minimal generators which is an useful index in commutative algebra (in particular in factorization theory) to analyze the primality of the elements in the semigroup. The model consists of solving a problem of optimizing a linear function over the efficient set of a multiobjective linear integer program. We offer a methodology to solve this problem and we provide some computational experiments to show the efficiency of the proposed algorithm.

Suggested Citation

  • Blanco, Víctor, 2011. "A mathematical programming approach to the computation of the omega invariant of a numerical semigroup," European Journal of Operational Research, Elsevier, vol. 215(3), pages 539-550, December.
  • Handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:539-550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711006060
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesús A. De Loera & Raymond Hemmecke & Matthias Köppe, 2009. "Pareto Optima of Multicriteria Integer Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 39-48, February.
    2. Abbas, Moncef & Chaabane, Djamal, 2006. "Optimizing a linear function over an integer efficient set," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1140-1161, October.
    3. Castro, F. & Gago, J. & Hartillo, I. & Puerto, J. & Ucha, J.M., 2011. "An algebraic approach to integer portfolio problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 647-659, May.
    4. Odile Marcotte & Richard M. Soland, 1986. "An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization," Management Science, INFORMS, vol. 32(1), pages 61-75, January.
    5. Jorge, Jesús M., 2009. "An algorithm for optimizing a linear function over an integer efficient set," European Journal of Operational Research, Elsevier, vol. 195(1), pages 98-103, May.
    6. Özlen, Melih & Azizoglu, Meral, 2009. "Multi-objective integer programming: A general approach for generating all non-dominated solutions," European Journal of Operational Research, Elsevier, vol. 199(1), pages 25-35, November.
    7. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weihua & Reimann, Marc, 2014. "A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 15-24.
    2. Weihua Zhang & Marc Reimann, 2014. "Towards a multi-objective performance assessment and optimization model of a two-echelon supply chain using SCOR metrics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 591-622, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "A new method for optimizing a linear function over the efficient set of a multiobjective integer program," European Journal of Operational Research, Elsevier, vol. 260(3), pages 904-919.
    2. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    3. Jorge, Jesús M., 2009. "An algorithm for optimizing a linear function over an integer efficient set," European Journal of Operational Research, Elsevier, vol. 195(1), pages 98-103, May.
    4. Melih Ozlen & Benjamin A. Burton & Cameron A. G. MacRae, 2014. "Multi-Objective Integer Programming: An Improved Recursive Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 470-482, February.
    5. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    6. Melih Ozlen & Meral Azizoğlu & Benjamin Burton, 2013. "Optimising a nonlinear utility function in multi-objective integer programming," Journal of Global Optimization, Springer, vol. 56(1), pages 93-102, May.
    7. Gokhan Kirlik & Serpil Sayın, 2015. "Computing the nadir point for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 62(1), pages 79-99, May.
    8. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    9. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    10. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    11. Oguz, Osman, 2010. "Cutting plane algorithms for 0-1 programming based on cardinality cuts," European Journal of Operational Research, Elsevier, vol. 205(2), pages 273-279, September.
    12. Martijn Merwe & Melih Ozlen & John W. Hearne & James P. Minas, 2017. "Dynamic rerouting of vehicles during cooperative wildfire response operations," Annals of Operations Research, Springer, vol. 254(1), pages 467-480, July.
    13. Burdett, Robert & Kozan, Erhan, 2016. "A multi-criteria approach for hospital capacity analysis," European Journal of Operational Research, Elsevier, vol. 255(2), pages 505-521.
    14. Löschenbrand, Markus, 2020. "Finding multiple Nash equilibria via machine learning-supported Gröbner bases," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1178-1189.
    15. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    16. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    17. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.
    18. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    19. Heiko Vogel, 2012. "Solving market split problems with heuristical lattice reduction," Annals of Operations Research, Springer, vol. 196(1), pages 581-590, July.
    20. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:539-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.