IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i3p647-659.html
   My bibliography  Save this article

An algebraic approach to integer portfolio problems

Author

Listed:
  • Castro, F.
  • Gago, J.
  • Hartillo, I.
  • Puerto, J.
  • Ucha, J.M.

Abstract

Integer variables allow the treatment of some portfolio optimization problems in a more realistic way and introduce the possibility of adding some natural features to the model. We propose an algebraic approach to maximize the expected return under a given admissible level of risk measured by the covariance matrix. To reach an optimal portfolio it is an essential ingredient the computation of different test sets (via Gröbner basis) of linear subproblems that are used in a dual search strategy.

Suggested Citation

  • Castro, F. & Gago, J. & Hartillo, I. & Puerto, J. & Ucha, J.M., 2011. "An algebraic approach to integer portfolio problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 647-659, May.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:647-659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00756-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Han-Lin & Tsai, Jung-Fa, 2008. "A distributed computation algorithm for solving portfolio problems with integer variables," European Journal of Operational Research, Elsevier, vol. 186(2), pages 882-891, April.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Michaud, Richard O. & Michaud, Robert O., 2008. "Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation," OUP Catalogue, Oxford University Press, edition 2, number 9780195331912.
    4. Corazza, Marco & Favaretto, Daniela, 2007. "On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1947-1960, February.
    5. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    6. Li, Han-Lin & Chang, Ching-Ter, 1998. "An approximate approach of global optimization for polynomial programming problems," European Journal of Operational Research, Elsevier, vol. 107(3), pages 625-632, June.
    7. Geman, Hélyette & Kharoubi, Cécile, 2008. "WTI crude oil Futures in portfolio diversification: The time-to-maturity effect," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2553-2559, December.
    8. Sharpe, William F., 1971. "A Linear Programming Approximation for the General Portfolio Analysis Problem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1263-1275, December.
    9. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    10. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    11. Chng, Michael T., 2009. "Economic linkages across commodity futures: Hedging and trading implications," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 958-970, May.
    12. Dimitris Bertsimas & Georgia Perakis & Sridhar Tayur, 2000. "A New Algebraic Geometry Algorithm for Integer Programming," Management Science, INFORMS, vol. 46(7), pages 999-1008, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leal, Marina & Ponce, Diego & Puerto, Justo, 2020. "Portfolio problems with two levels decision-makers: Optimal portfolio selection with pricing decisions on transaction costs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 712-727.
    2. Blanco, Víctor, 2011. "A mathematical programming approach to the computation of the omega invariant of a numerical semigroup," European Journal of Operational Research, Elsevier, vol. 215(3), pages 539-550, December.
    3. Daniel Felix Ahelegbey & Paolo Giudici & Fatemeh Mojtahedi, 2022. "Crypto Asset Portfolio Selection," FinTech, MDPI, vol. 1(1), pages 1-9, February.
    4. González-Díaz, Julio & González-Rodríguez, Brais & Leal, Marina & Puerto, Justo, 2021. "Global optimization for bilevel portfolio design: Economic insights from the Dow Jones index," Omega, Elsevier, vol. 102(C).
    5. Löschenbrand, Markus, 2020. "Finding multiple Nash equilibria via machine learning-supported Gröbner bases," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1178-1189.
    6. Fereshteh Vaezi & Seyed Jafar Sadjadi & Ahmad Makui, 2019. "A portfolio selection model based on the knapsack problem under uncertainty," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    7. J. Gago-Vargas & I. Hartillo & J. Puerto & J. Ucha, 2015. "An improved test set approach to nonlinear integer problems with applications to engineering design," Computational Optimization and Applications, Springer, vol. 62(2), pages 565-588, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Li, Han-Lin & Tsai, Jung-Fa, 2008. "A distributed computation algorithm for solving portfolio problems with integer variables," European Journal of Operational Research, Elsevier, vol. 186(2), pages 882-891, April.
    3. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    4. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    5. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    6. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    7. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    10. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    11. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    12. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    13. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    14. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    15. Philipp Baumann & Norbert Trautmann, 2013. "Portfolio-optimization models for small investors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 345-356, June.
    16. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    17. Zura Kakushadze & Willie Yu, 2017. "Notes on Fano Ratio and Portfolio Optimization," Papers 1711.10640, arXiv.org, revised Apr 2018.
    18. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    19. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    20. X Cai & K L Teo & X Q Yang & X Y Zhou, 2004. "Minimax portfolio optimization: empirical numerical study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 65-72, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:647-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.