IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v212y2011i1p155-163.html
   My bibliography  Save this article

DEA based dimensionality reduction for classification problems satisfying strict non-satiety assumption

Author

Listed:
  • Pendharkar, Parag C.
  • Troutt, Marvin D.

Abstract

This study shows how data envelopment analysis (DEA) can be used to reduce vertical dimensionality of certain data mining databases. The study illustrates basic concepts using a real-world graduate admissions decision task. It is well known that cost sensitive mixed integer programming (MIP) problems are NP-complete. This study shows that heuristic solutions for cost sensitive classification problems can be obtained by solving a simple goal programming problem by that reduces the vertical dimension of the original learning dataset. Using simulated datasets and a misclassification cost performance metric, the performance of proposed goal programming heuristic is compared with the extended DEA-discriminant analysis MIP approach. The holdout sample results of our experiments shows that the proposed heuristic approach outperforms the extended DEA-discriminant analysis MIP approach.

Suggested Citation

  • Pendharkar, Parag C. & Troutt, Marvin D., 2011. "DEA based dimensionality reduction for classification problems satisfying strict non-satiety assumption," European Journal of Operational Research, Elsevier, vol. 212(1), pages 155-163, July.
  • Handle: RePEc:eee:ejores:v:212:y:2011:i:1:p:155-163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00091-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    2. A. Duarte Silva & Antonie Stam, 1997. "A mixed integer programming algorithm for minimizing the training sample misclassification cost in two-group classification," Annals of Operations Research, Springer, vol. 74(0), pages 129-157, November.
    3. Marvin D. Troutt, 1994. "Direction-Specific Gradient Scaling for Interactive Multicriterion Optimization Using an Abstract Mass Concept," Operations Research, INFORMS, vol. 42(6), pages 1110-1119, December.
    4. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    5. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    6. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanling Wei & Tsung-Sheng Chang & Song Han, 2014. "Quantile–DEA classifiers with interval data," Annals of Operations Research, Springer, vol. 217(1), pages 535-563, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parag Pendharkar & Marvin Troutt, 2014. "Interactive classification using data envelopment analysis," Annals of Operations Research, Springer, vol. 214(1), pages 125-141, March.
    2. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    3. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    4. Asparoukhov, Ognian K. & Krzanowski, Wojtek J., 2001. "A comparison of discriminant procedures for binary variables," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 139-160, December.
    5. Mark Gilchrist & Deana Lehmann Mooers & Glenn Skrubbeltrang & Francine Vachon, 2012. "Knowledge Discovery in Databases for Competitive Advantage," Journal of Management and Strategy, Journal of Management and Strategy, Sciedu Press, vol. 3(2), pages 2-15, April.
    6. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    8. Moraes, Marcelo Botelho da Costa & Nagano, Marcelo Seido, 2014. "Evolutionary models in cash management policies with multiple assets," Economic Modelling, Elsevier, vol. 39(C), pages 1-7.
    9. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    10. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    11. Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
    12. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    13. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    14. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    15. Ma, Li-Ching, 2012. "Screening alternatives graphically by an extended case-based distance approach," Omega, Elsevier, vol. 40(1), pages 96-103, January.
    16. Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
    17. Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    18. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    19. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    20. Parimal Kumar Giri & Sagar S. De & Sachidananda Dehuri & Sung‐Bae Cho, 2021. "Biogeography based optimization for mining rules to assess credit risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 35-51, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:212:y:2011:i:1:p:155-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.