IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i1p218-226.html
   My bibliography  Save this article

An ensemble method using credal decision trees

Author

Listed:
  • Abellán, Joaquín
  • Masegosa, Andrés R.

Abstract

Supervised classification learning can be considered as an important tool for decision support. In this paper, we present a method for supervised classification learning, which ensembles decision trees obtained via convex sets of probability distributions (also called credal sets) and uncertainty measures. Our method forces the use of different decision trees and it has mainly the following characteristics: it obtains a good percentage of correct classifications and an improvement in time of processing compared with known classification methods; it not needs to fix the number of decision trees to be used; and it can be parallelized to apply it on very large data sets.

Suggested Citation

  • Abellán, Joaquín & Masegosa, Andrés R., 2010. "An ensemble method using credal decision trees," European Journal of Operational Research, Elsevier, vol. 205(1), pages 218-226, August.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:218-226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00911-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
    2. West, David & Mangiameli, Paul & Rampal, Rohit & West, Vivian, 2005. "Ensemble strategies for a medical diagnostic decision support system: A breast cancer diagnosis application," European Journal of Operational Research, Elsevier, vol. 162(2), pages 532-551, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azad, Mohammad & Moshkov, Mikhail, 2017. "Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions," European Journal of Operational Research, Elsevier, vol. 263(3), pages 910-921.
    2. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    3. Abellán, Joaquín & Baker, Rebecca M. & Coolen, Frank P.A. & Crossman, Richard J. & Masegosa, Andrés R., 2014. "Classification with decision trees from a nonparametric predictive inference perspective," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 789-802.
    4. Abellán, Joaquín & Baker, Rebecca M. & Coolen, Frank P.A., 2011. "Maximising entropy on the nonparametric predictive inference model for multinomial data," European Journal of Operational Research, Elsevier, vol. 212(1), pages 112-122, July.
    5. Chikalov, Igor & Hussain, Shahid & Moshkov, Mikhail, 2018. "Bi-criteria optimization of decision trees with applications to data analysis," European Journal of Operational Research, Elsevier, vol. 266(2), pages 689-701.
    6. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    2. Farid Bagheri & Diego Reforgiato Recupero & Espen Sirnes, 2023. "Leveraging Return Prediction Approaches for Improved Value-at-Risk Estimation," Data, MDPI, vol. 8(8), pages 1-22, August.
    3. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    4. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    5. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    6. Yi Du & Hua Yu & Zhijun Li, 0. "Research of SVM ensembles in medical examination scheduling," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.
    7. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    8. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    9. Wang, Haifeng & Zheng, Bichen & Yoon, Sang Won & Ko, Hoo Sang, 2018. "A support vector machine-based ensemble algorithm for breast cancer diagnosis," European Journal of Operational Research, Elsevier, vol. 267(2), pages 687-699.
    10. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    11. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    12. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    13. T H Moon & S Y Sohn, 2010. "Technology credit scoring model considering both SME characteristics and economic conditions: The Korean case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 666-675, April.
    14. Ma, Rui & Mao, Di & Cao, Dongmei & Luo, Shuai & Gupta, Suraksha & Wang, Yichuan, 2024. "From vineyard to table: Uncovering wine quality for sales management through machine learning," Journal of Business Research, Elsevier, vol. 176(C).
    15. Y Hayashi & M-H Hsieh & R Setiono, 2009. "Predicting consumer preference for fast-food franchises: a data mining approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1221-1229, September.
    16. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    17. Salonee Patel & Manan Shah, 2023. "A Comprehensive Study on Implementing Big Data in the Auditing Industry," Annals of Data Science, Springer, vol. 10(3), pages 657-677, June.
    18. János Tóth & Henrietta Tomán & Gabriella Hajdu & András Hajdu, 2023. "Using Noisy Evaluation to Accelerate Parameter Optimization of Medical Image Segmentation Ensembles," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    19. Tripathi Manas & Kumar Saurabh & Inani Sarveshwar Kumar, 2021. "Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 43-71, January.
    20. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:218-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.