IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p608-618.html
   My bibliography  Save this article

Amalgamation of partitions from multiple segmentation bases: A comparison of non-model-based and model-based methods

Author

Listed:
  • Andrews, Rick L.
  • Brusco, Michael J.
  • Currim, Imran S.

Abstract

The segmentation of customers on multiple bases is a pervasive problem in marketing research. For example, segmentation service providers partition customers using a variety of demographic and psychographic characteristics, as well as an array of consumption attributes such as brand loyalty, switching behavior, and product/service satisfaction. Unfortunately, the partitions obtained from multiple bases are often not in good agreement with one another, making effective segmentation a difficult managerial task. Therefore, the construction of segments using multiple independent bases often results in a need to establish a partition that represents an amalgamation or consensus of the individual partitions. In this paper, we compare three methods for finding a consensus partition. The first two methods are deterministic, do not use a statistical model in the development of the consensus partition, and are representative of methods used in commercial settings, whereas the third method is based on finite mixture modeling. In a large-scale simulation experiment the finite mixture model yielded better average recovery of holdout (validation) partitions than its non-model-based competitors. This result calls for important changes in the current practice of segmentation service providers that group customers for a variety of managerial goals related to the design and marketing of products and services.

Suggested Citation

  • Andrews, Rick L. & Brusco, Michael J. & Currim, Imran S., 2010. "Amalgamation of partitions from multiple segmentation bases: A comparison of non-model-based and model-based methods," European Journal of Operational Research, Elsevier, vol. 201(2), pages 608-618, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:608-618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00155-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gary Kochenberger & Fred Glover & Bahram Alidaee & Haibo Wang, 2005. "Clustering of Microarray data via Clique Partitioning," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 77-92, August.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    4. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    5. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    6. Gintaras Palubeckis, 1997. "A Branch-and-Bound Approach Using Polyhedral Results for a Clustering Problem," INFORMS Journal on Computing, INFORMS, vol. 9(1), pages 30-42, February.
    7. Buratto, Alessandra & Grosset, Luca & Viscolani, Bruno, 2006. "Advertising a new product in a segmented market," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1262-1267, December.
    8. Mizuno, Makoto & Saji, Akira & Sumita, Ushio & Suzuki, Hideo, 2008. "Optimal threshold analysis of segmentation methods for identifying target customers," European Journal of Operational Research, Elsevier, vol. 186(1), pages 358-379, April.
    9. Michael Brusco & Hans-Friedrich Köhn, 2008. "Optimal Partitioning of a Data Set Based on the p-Median Model," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 89-105, March.
    10. Zhang, Michael & Bell, Peter C., 2007. "The effect of market segmentation with demand leakage between market segments on a firm's price and inventory decisions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 738-754, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prieto-Rodriguez, Juan & Vecco, Marilena, 2021. "Reading between the lines in the art market: Lack of transparency and price heterogeneity as an indicator of multiple equilibria," Economic Modelling, Elsevier, vol. 102(C).
    2. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    3. Vecco, Marilena & Prieto-Rodriguez, Juan & Teerink, Simone, 2024. "Climbing the ladder? The gender gap in art prices across artists’ cohorts in the Dutch art market," European Economic Review, Elsevier, vol. 163(C).
    4. Schlittgen, Rainer & Ringle, Christian M. & Sarstedt, Marko & Becker, Jan-Michael, 2016. "Segmentation of PLS path models by iterative reweighted regressions," Journal of Business Research, Elsevier, vol. 69(10), pages 4583-4592.
    5. Yao Jiao & Yu Yang & Hongshan Zhang, 2019. "An integration model for generating and selecting product configuration plans," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1291-1302, March.
    6. Durand, Robert B. & Greene, William H. & Harris, Mark N. & Khoo, Joye, 2022. "Heterogeneity in speed of adjustment using finite mixture models," Economic Modelling, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 295-304, June.
    2. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    3. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    4. Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
    5. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    6. Naoto Yamashita & Kohei Adachi, 2020. "A Modified k-Means Clustering Procedure for Obtaining a Cardinality-Constrained Centroid Matrix," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 509-525, July.
    7. Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.
    8. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    9. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    10. Santiago R. Balseiro & David B. Brown & Chen Chen, 2021. "Dynamic Pricing of Relocating Resources in Large Networks," Management Science, INFORMS, vol. 67(7), pages 4075-4094, July.
    11. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    12. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    13. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    14. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    16. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    17. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    18. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    19. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    20. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:608-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.