IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p701-713.html
   My bibliography  Save this article

Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization

Author

Listed:
  • Tan, K.C.
  • Chiam, S.C.
  • Mamun, A.A.
  • Goh, C.K.

Abstract

Although recent studies have shown that evolutionary algorithms are effective tools for solving multi-objective optimization problems, their performances are often bottlenecked by the suitability of the evolutionary operators with respect to the optimization problem at hand and their corresponding parametric settings. To adapt the search dynamic of evolutionary operation in multi-objective optimization, this paper proposes an adaptive variation operator that exploits the chromosomal structure of binary representation and synergizes the function of crossover and mutation. The overall search ability is deterministically tuned online to maintain a balance between extensive exploration and local fine-tuning at different stages of the evolutionary search. Also, the coordination between the two variation operators is achieved by means of an adaptive control that ensures an efficient exchange of information between the different chromosomal sub-structures throughout the evolutionary search. Extensive comparative studies with several representative variation operators are performed on different benchmark problems and significant algorithmic performance improvements in terms of proximity, uniformity and diversity are obtained with the incorporation of the proposed adaptive variation operator into the evolutionary multi-objective optimization process.

Suggested Citation

  • Tan, K.C. & Chiam, S.C. & Mamun, A.A. & Goh, C.K., 2009. "Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 197(2), pages 701-713, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:701-713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00589-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, K.C. & Goh, C.K. & Yang, Y.J. & Lee, T.H., 2006. "Evolving better population distribution and exploration in evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 171(2), pages 463-495, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Avalos & Erik Cuevas & Jorge Gálvez & Essam H. Houssein & Kashif Hussain, 2020. "Comparison of Circular Symmetric Low-Pass Digital IIR Filter Design Using Evolutionary Computation Techniques," Mathematics, MDPI, vol. 8(8), pages 1-22, July.
    2. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    3. Örnek, Bülent Nafi & Aydemir, Salih Berkan & Düzenli, Timur & Özak, Bilal, 2022. "A novel version of slime mould algorithm for global optimization and real world engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 253-288.
    4. Wang, Xiaoyu & Luo, Dongkun & Zhao, Xu & Sun, Zhu, 2018. "Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation," Energy, Elsevier, vol. 152(C), pages 539-548.
    5. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    6. Teng, Sin Yong & Loy, Adrian Chun Minh & Leong, Wei Dong & How, Bing Shen & Chin, Bridgid Lai Fui & Máša, Vítězslav, 2019. "Catalytic thermal degradation of Chlorella Vulgaris: Evolving deep neural networks for optimization," MPRA Paper 95772, University Library of Munich, Germany.
    7. J. Apolinar Muñoz Rodríguez, 2022. "Multi-Objective Optimization via GA Based on Micro Laser Line Scanning Data for Micro-Scale Surface Modeling," Energies, MDPI, vol. 15(18), pages 1-23, September.
    8. Chen, Jianyong & Lin, Qiuzhen & Ji, Zhen, 2010. "A hybrid immune multiobjective optimization algorithm," European Journal of Operational Research, Elsevier, vol. 204(2), pages 294-302, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS," European Journal of Operational Research, Elsevier, vol. 218(3), pages 735-746.
    2. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    3. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    4. J. L. Redondo & J. Fernández & P. M. Ortigosa, 2017. "FEMOEA: a fast and efficient multi-objective evolutionary algorithm," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 113-135, February.
    5. Rui Zhang, 2017. "Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach," IJERPH, MDPI, vol. 15(1), pages 1-32, December.
    6. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    7. Ding, Jian-Ya & Song, Shiji & Wu, Cheng, 2016. "Carbon-efficient scheduling of flow shops by multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 248(3), pages 758-771.
    8. Chen, Jianyong & Lin, Qiuzhen & Ji, Zhen, 2010. "A hybrid immune multiobjective optimization algorithm," European Journal of Operational Research, Elsevier, vol. 204(2), pages 294-302, July.
    9. Rui Zhang, 2017. "Sustainable Scheduling of Cloth Production Processes by Multi-Objective Genetic Algorithm with Tabu-Enhanced Local Search," Sustainability, MDPI, vol. 9(10), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:701-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.