IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v193y2009i3p791-804.html
   My bibliography  Save this article

Skilled workforce scheduling in Service Centres

Author

Listed:
  • Valls, Vicente
  • Pérez, Ángeles
  • Quintanilla, Sacramento

Abstract

The Skilled Workforce Project Scheduling Problem (SWPSP) is a complex problem of task scheduling and resource assignment that comes up in the daily management of many company Service Centres (SC). The SWPSP considers many real characteristics faced daily by the SC: client-company service quality agreements that establish maximum dates for the beginning and the end of tasks with penalties for delays, criticality levels indicating the client-priority in processing each task, generalized precedence relationships that can produce cycle structures, time period and percentage time lags and variable task durations depending on the worker executing the task. Furthermore, the SC workforce is made up of specialist workers characterised by efficiency levels showing their efficiency and speed executing the several types of tasks. Each worker has his or her own timetable. The main objective of the SWPSP is to quickly obtain a feasible plan of action satisfying maximum established dates and timetable worker constraints. Secondary objectives deal with the urgency levels imposed by the criticality task levels, to obtain well-balanced worker workloads and an efficient assignment of specialists to tasks. In this paper an efficient and quick hybrid genetic algorithm that combines local searches with genetic population management techniques is presented to manage the model.

Suggested Citation

  • Valls, Vicente & Pérez, Ángeles & Quintanilla, Sacramento, 2009. "Skilled workforce scheduling in Service Centres," European Journal of Operational Research, Elsevier, vol. 193(3), pages 791-804, March.
  • Handle: RePEc:eee:ejores:v:193:y:2009:i:3:p:791-804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01086-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sönke Hartmann, 2001. "Project Scheduling with Multiple Modes: A Genetic Algorithm," Annals of Operations Research, Springer, vol. 102(1), pages 111-135, February.
    2. Francisco Ballestín & Vicente Valls & Sacramento Quintanilla, 2006. "Due Dates and RCPSP," International Series in Operations Research & Management Science, in: Joanna Józefowska & Jan Weglarz (ed.), Perspectives in Modern Project Scheduling, chapter 0, pages 79-104, Springer.
    3. Mario Vanhoucke, 2002. "Optimal due date assignment in project scheduling," Vlerick Leuven Gent Management School Working Paper Series 2002-19, Vlerick Leuven Gent Management School.
    4. Cai, X. & Li, K. N., 2000. "A genetic algorithm for scheduling staff of mixed skills under multi-criteria," European Journal of Operational Research, Elsevier, vol. 125(2), pages 359-369, September.
    5. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.
    6. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    7. Heilmann, Roland, 2003. "A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 144(2), pages 348-365, January.
    8. De Reyck, Bert & Herroelen, Willy, 1999. "The multi-mode resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 119(2), pages 538-556, December.
    9. David Lesaint & Christos Voudouris & Nader Azarmi, 2000. "Dynamic Workforce Scheduling for British Telecommunications plc," Interfaces, INFORMS, vol. 30(1), pages 45-56, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    2. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    3. Guillaume, Romain & Houé, Raymond & Grabot, Bernard, 2014. "Robust competence assessment for job assignment," European Journal of Operational Research, Elsevier, vol. 238(2), pages 630-644.
    4. Snauwaert, Jakob & Vanhoucke, Mario, 2023. "A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 1-19.
    5. Meya Haroune & Cheikh Dhib & Emmanuel Neron & Ameur Soukhal & Hafed Mohamed Babou & Mohamedade Farouk Nanne, 2023. "Multi-project scheduling problem under shared multi-skill resource constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 194-235, April.
    6. Kreter, Stefan & Rieck, Julia & Zimmermann, Jürgen, 2016. "Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars," European Journal of Operational Research, Elsevier, vol. 251(2), pages 387-403.
    7. Rong Chen & Changyong Liang & Dongxiao Gu & Joseph Y-T. Leung, 2017. "A multi-objective model for multi-project scheduling and multi-skilled staff assignment for IT product development considering competency evolution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6207-6234, November.
    8. Cipriano Santos & Tere Gonzalez & Haitao Li & Kay-Yut Chen & Dirk Beyer & Sundaresh Biligi & Qi Feng & Ravindra Kumar & Shelen Jain & Ranga Ramanujam & Alex Zhang, 2013. "HP Enterprise Services Uses Optimization for Resource Planning," Interfaces, INFORMS, vol. 43(2), pages 152-169, April.
    9. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    10. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    11. Cao, Nguyen Vi & Fragniere, Emmanuel, 2014. "A Service Production Planning Model Integrating Human Risk Factors," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 345-359, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    12. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    13. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    14. Zhilan Lou & Wanchen Jie & Shuzhu Zhang, 2020. "Multi-Objective Optimization for Order Assignment in Food Delivery Industry with Human Factor Considerations," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    15. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    16. Drótos, Márton & Kis, Tamás, 2011. "Resource leveling in a machine environment," European Journal of Operational Research, Elsevier, vol. 212(1), pages 12-21, July.
    17. Huang, PoTsang B. & Yu, Tsung-Ying & Chou, Yuan-ju & Lin, Yi-Ching, 2016. "Simulation method for dispatching national border security manpower to mitigate manpower shortage," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 43-51.
    18. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    19. Quintanilla, Sacramento & Pérez, Ángeles & Lino, Pilar & Valls, Vicente, 2012. "Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres," European Journal of Operational Research, Elsevier, vol. 219(1), pages 59-72.
    20. Murat Fırat & C. Hurkens & Alexandre Laugier, 2014. "Stable multi-skill workforce assignments," Annals of Operations Research, Springer, vol. 213(1), pages 95-114, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quintanilla, Sacramento & Pérez, Ángeles & Lino, Pilar & Valls, Vicente, 2012. "Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres," European Journal of Operational Research, Elsevier, vol. 219(1), pages 59-72.
    2. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    3. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    4. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    6. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    8. Hong Zhang & Heng Li & C. M. Tam, 2006. "Heuristic scheduling of resource-constrained, multiple-mode and repetitive projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(2), pages 159-169.
    9. Alexander Schnell & Richard F. Hartl, 2016. "On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 283-303, March.
    10. Jürgen Kuster & Dietmar Jannach & Gerhard Friedrich, 2010. "Applying Local Rescheduling in response to schedule disruptions," Annals of Operations Research, Springer, vol. 180(1), pages 265-282, November.
    11. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
    12. Elloumi, Sonda & Fortemps, Philippe, 2010. "A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 31-41, August.
    13. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    14. Xiao, Jing & Wu, Zhou & Hong, Xi-Xi & Tang, Jian-Chao & Tang, Yong, 2016. "Integration of electromagnetism with multi-objective evolutionary algorithms for RCPSP," European Journal of Operational Research, Elsevier, vol. 251(1), pages 22-35.
    15. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    16. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    17. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    18. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    19. Kumar, Akhilesh & Prakash & Tiwari, M.K. & Shankar, Ravi & Baveja, Alok, 2006. "Solving machine-loading problem of a flexible manufacturing system with constraint-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1043-1069, December.
    20. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:3:p:791-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.