IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i2p409-415.html
   My bibliography  Save this article

A general characterization for non-balanced games in terms of U-cycles

Author

Listed:
  • Cesco, Juan Carlos

Abstract

In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of Game Theory 32, 211-222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equivalent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar characterization for non-balanced TU-games.

Suggested Citation

  • Cesco, Juan Carlos, 2008. "A general characterization for non-balanced games in terms of U-cycles," European Journal of Operational Research, Elsevier, vol. 191(2), pages 409-415, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:2:p:409-415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00900-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Carlos Cesco, 2003. "Fundamental cycles of pre-imputations in non-balanced TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(2), pages 211-221, December.
    2. Sengupta, Abhijit & Sengupta, Kunal, 1996. "A Property of the Core," Games and Economic Behavior, Elsevier, vol. 12(2), pages 266-273, February.
    3. Sengupta, Abhijit & Sengupta, Kunal, 1994. "Viable Proposals," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(2), pages 347-359, May.
    4. Koczy, Laszlo A. & Lauwers, Luc, 2004. "The coalition structure core is accessible," Games and Economic Behavior, Elsevier, vol. 48(1), pages 86-93, July.
    5. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    6. Jeroen Kuipers & Ulrich Faigle & Walter Kern, 2001. "On the computation of the nucleolus of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(1), pages 79-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    2. Koczy, Laszlo A., 2006. "The core can be accessed with a bounded number of blocks," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 56-64, December.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2011. "On the number of blocks required to access the coalition structure core," MPRA Paper 29755, University Library of Munich, Germany.
    4. Koczy, Laszlo A. & Lauwers, Luc, 2007. "The minimal dominant set is a non-empty core-extension," Games and Economic Behavior, Elsevier, vol. 61(2), pages 277-298, November.
    5. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.
    6. Herings, P. Jean-Jacques & Kóczy, László Á., 2021. "The equivalence of the minimal dominant set and the myopic stable set for coalition function form games," Games and Economic Behavior, Elsevier, vol. 127(C), pages 67-79.
    7. Bollen, P.W.L. & Simons, John, 2005. "A synthesis of Quality Criteria for requirements Elicitation Methods," Research Memorandum 042, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Yang, Yi-You, 2011. "Accessible outcomes versus absorbing outcomes," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 65-70, July.
    9. Koczy, Laszlo A. & Lauwers, Luc, 2004. "The coalition structure core is accessible," Games and Economic Behavior, Elsevier, vol. 48(1), pages 86-93, July.
    10. Ray, Debraj & Vohra, Rajiv, 2015. "Coalition Formation," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Debraj Ray & Rajiv Vohra, 2015. "The Farsighted Stable Set," Econometrica, Econometric Society, vol. 83(3), pages 977-1011, May.
    12. Péter Szikora, 2012. "Dynamic cooperative models of coalition formation and the core," Proceedings- 10th International Conference on Mangement, Enterprise and Benchmarking (MEB 2012),, Óbuda University, Keleti Faculty of Business and Management.
    13. Kimya, Mert, 2020. "Equilibrium coalitional behavior," Theoretical Economics, Econometric Society, vol. 15(2), May.
    14. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "Accessibility and stability of the coalition structure core," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 187-202, October.
    15. Xiaotie Deng & Qizhi Fang & Xiaoxun Sun, 2009. "Finding nucleolus of flow game," Journal of Combinatorial Optimization, Springer, vol. 18(1), pages 64-86, July.
    16. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    17. Yang, Yi-You, 2010. "On the accessibility of the core," Games and Economic Behavior, Elsevier, vol. 69(1), pages 194-199, May.
    18. Demange, Gabrielle, 2009. "The strategy structure of some coalition formation games," Games and Economic Behavior, Elsevier, vol. 65(1), pages 83-104, January.
    19. Szikora Péter, 2011. "Tanítás értelmezhetõ-e, mint egy kooperatív dinamikus játék?," Proceedings- 9th International Conference on Mangement, Enterprise and Benchmarking (MEB 2011),, Óbuda University, Keleti Faculty of Business and Management.
    20. Péter Szikora, 2010. "A comparison of dynamic cooperative models of coalition formation," Proceedings-8th International Conference on Mangement,Enterprise and Benchmarking (MEB 2010),, Óbuda University, Keleti Faculty of Business and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:2:p:409-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.