IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1409-1426.html
   My bibliography  Save this article

Local search algorithms for political districting

Author

Listed:
  • Ricca, Federica
  • Simeone, Bruno

Abstract

Electoral district planning plays an important role in a political election, especially when a majority voting rule is adopted, because it interferes in the translation of votes into seats. The practice of gerrymandering can easily take place if the shape of electoral districts is not controlled. In this paper we consider the following formulation of the political districting problem: given a connected graph (territory) with n nodes (territorial units), partition its set of nodes into k classes such that the subgraph induced by each class (district) is connected and a given vector of functions of the partition is minimized. The nonlinearity of such functions and the connectivity constraints make this network optimization problem a very hard one. Thus, the use of local search heuristics is justified. Experimentation on a sample of medium-large real-life instances has been carried out in order to compare the performance of four local search metaheuristics, i.e., Descent, Tabu Search, Simulated Annealing, and Old Bachelor Acceptance. Our experiments with Italian political districting provided strong evidence in favor of the use of automatic procedures. Actually, except for Descent, all local search algorithms showed a very good performance for this problem. In particular, in our sample of regions, Old Bachelor Acceptance produced the best results in the majority of the cases, especially when the objective function was compactness. Moreover, the district maps generated by this heuristic dominate the institutional district plan with respect to all the districting criteria under consideration. When properly designed, automatic procedures tend to be impartial and yield good districting alternatives. Moreover, they are remarkably fast, and thus they allow for the exploration of a large number of scenarios.

Suggested Citation

  • Ricca, Federica & Simeone, Bruno, 2008. "Local search algorithms for political districting," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1409-1426, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1409-1426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00627-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Brigitte Jaumard & Christophe Meyer & Bruno Simeone & Valeria Doring, 2003. "Maximum Split Clustering Under Connectivity Constraints," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 143-180, September.
    2. R. S. Garfinkel & G. L. Nemhauser, 1970. "Optimal Political Districting by Implicit Enumeration Techniques," Management Science, INFORMS, vol. 16(8), pages 495-508, April.
    3. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    4. Anuj Mehrotra & Ellis L. Johnson & George L. Nemhauser, 1998. "An Optimization Based Heuristic for Political Districting," Management Science, INFORMS, vol. 44(8), pages 1100-1114, August.
    5. T. C. Hu & Andrew B. Kahng & Chung-Wen Albert Tsao, 1995. "Old Bachelor Acceptance: A New Class of Non-Monotone Threshold Accepting Methods," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 417-425, November.
    6. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    7. GARFINKEL, Robert S. & NEMHAUSER, Geroge L., 1970. "Optimal political districting by implicit enumeration techniques," LIDAM Reprints CORE 54, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanık, Seda & Sürer, Özge & Öztayşi, Başar, 2016. "Designing sustainable energy regions using genetic algorithms and location-allocation approach," Energy, Elsevier, vol. 97(C), pages 161-172.
    2. Juan A. Díaz & Dolores E. Luna, 2017. "Primal and dual bounds for the vertex p-median problem with balance constraints," Annals of Operations Research, Springer, vol. 258(2), pages 613-638, November.
    3. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    4. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    5. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    6. Photis, Yorgos N., 2012. "Redefinition of the Greek electoral districts through the application of a region-building algorithm," MPRA Paper 42398, University Library of Munich, Germany, revised Oct 2012.
    7. D. M. King & S. H. Jacobson & E. C. Sewell, 2018. "The geo-graph in practice: creating United States Congressional Districts from census blocks," Computational Optimization and Applications, Springer, vol. 69(1), pages 25-49, January.
    8. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    9. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    10. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    11. Swamy, Rahul & King, Douglas M. & Ludden, Ian G. & Dobbs, Kiera W. & Jacobson, Sheldon H., 2024. "A practical optimization framework for political redistricting: A case study in Arizona," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    12. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.
    13. Kiera W. Dobbs & Rahul Swamy & Douglas M. King & Ian G. Ludden & Sheldon H. Jacobson, 2024. "An Optimization Case Study in Analyzing Missouri Redistricting," Interfaces, INFORMS, vol. 54(2), pages 162-187, March.
    14. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    15. Balázs Fleiner & Balázs Nagy & Attila Tasnádi, 2017. "Optimal partisan districting on planar geographies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 879-888, December.
    16. Douglas M. King & Sheldon H. Jacobson & Edward C. Sewell & Wendy K. Tam Cho, 2012. "Geo-Graphs: An Efficient Model for Enforcing Contiguity and Hole Constraints in Planar Graph Partitioning," Operations Research, INFORMS, vol. 60(5), pages 1213-1228, October.
    17. Hannu Nurmi, 2014. "Some remarks on the concept of proportionality," Annals of Operations Research, Springer, vol. 215(1), pages 231-244, April.
    18. Burcin Bozkaya & Erhan Erkut & Dan Haight & Gilbert Laporte, 2011. "Designing New Electoral Districts for the City of Edmonton," Interfaces, INFORMS, vol. 41(6), pages 534-547, December.
    19. María Salazar-Aguilar & Roger Ríos-Mercado & Mauricio Cabrera-Ríos, 2011. "New Models for Commercial Territory Design," Networks and Spatial Economics, Springer, vol. 11(3), pages 487-507, September.
    20. M. Salazar-Aguilar & Roger Ríos-Mercado & José González-Velarde & Julián Molina, 2012. "Multiobjective scatter search for a commercial territory design problem," Annals of Operations Research, Springer, vol. 199(1), pages 343-360, October.
    21. Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2017. "Territorial amalgamation decisions in local government: Models and a case study from Italy," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 61-72.
    22. Miguel Ángel Gutiérrez-Andrade & Eric Alfredo Rincón-García & Sergio Gerardo de-los-Cobos-Silva & Pedro Lara-Velázquez & Roman Anselmo Mora-Gutiérrez & Antonin Ponsich, 2019. "Simulated Annealing and Artificial Bee Colony for the Redistricting Process in Mexico," Interfaces, INFORMS, vol. 49(3), pages 189-200, May.
    23. Steiner, Maria Teresinha Arns & Datta, Dilip & Steiner Neto, Pedro José & Scarpin, Cassius Tadeu & Rui Figueira, José, 2015. "Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil," Omega, Elsevier, vol. 52(C), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    2. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    3. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    4. Swamy, Rahul & King, Douglas M. & Ludden, Ian G. & Dobbs, Kiera W. & Jacobson, Sheldon H., 2024. "A practical optimization framework for political redistricting: A case study in Arizona," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    5. Balázs Fleiner & Balázs Nagy & Attila Tasnádi, 2017. "Optimal partisan districting on planar geographies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 879-888, December.
    6. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    7. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    8. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.
    9. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    10. Maria da Conceição Rego & Rui Fragoso & Vladimir Bushenkov, 2014. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," ERSA conference papers ersa14p218, European Regional Science Association.
    11. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    12. Fernando Tavares-Pereira & José Figueira & Vincent Mousseau & Bernard Roy, 2007. "Multiple criteria districting problems," Annals of Operations Research, Springer, vol. 154(1), pages 69-92, October.
    13. Ram Gopalan & Steven O. Kimbrough & Frederic H. Murphy & Nicholas Quintus, 2013. "The Philadelphia Districting Contest: Designing Territories for City Council Based Upon the 2010 Census," Interfaces, INFORMS, vol. 43(5), pages 477-489, October.
    14. M Blais & S D Lapierre & G Laporte, 2003. "Solving a home-care districting problem in an urban setting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(11), pages 1141-1147, November.
    15. Tavares Pereira, Fernando & Figueira, José Rui & Mousseau, Vincent & Roy, Bernard, 2009. "Comparing two territory partitions in districting problems: Indices and practical issues," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 72-88, March.
    16. María Salazar-Aguilar & Roger Ríos-Mercado & Mauricio Cabrera-Ríos, 2011. "New Models for Commercial Territory Design," Networks and Spatial Economics, Springer, vol. 11(3), pages 487-507, September.
    17. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    18. Edieal J. Pinker, 2013. "Introduction to the OR Forum Article: “Blotto Politics”," Operations Research, INFORMS, vol. 61(3), pages 531-531, June.
    19. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    20. R. Church & J. C. Duque & D. E. Restrepo, 2020. "The p-Innovation ecosystems model," Papers 2008.05885, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1409-1426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.