IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v182y2007i3p971-982.html
   My bibliography  Save this article

A stochastic approach to professional services firms' revenue optimization

Author

Listed:
  • Lai, K.K.
  • Wang, Ming
  • Liang, L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Lai, K.K. & Wang, Ming & Liang, L., 2007. "A stochastic approach to professional services firms' revenue optimization," European Journal of Operational Research, Elsevier, vol. 182(3), pages 971-982, November.
  • Handle: RePEc:eee:ejores:v:182:y:2007:i:3:p:971-982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00961-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    2. Richard E. Chatwin, 1998. "Multiperiod Airline Overbooking with a Single Fare Class," Operations Research, INFORMS, vol. 46(6), pages 805-819, December.
    3. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    4. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    5. J Pinder, 2005. "Using revenue management to improve pricing and capacity management in programme management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(1), pages 75-87, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    2. Sisi Wu & Yelin Fu & K. K. Lai & W. K. John Leung, 2018. "A Weighted Least-Square Dissimilarity Approach for Multiple Criteria ABC Inventory Classification," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-12, August.
    3. Yelin Fu & Kin Keung Lai & Liang Liang, 2016. "A robust optimisation approach to the problem of supplier selection and allocation in outsourcing," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 913-918, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    2. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    5. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    6. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    7. Mesak, Hani I. & Zhang, Hongkai & Pullis, Joe M., 2010. "On optimal service capacity allocation policy in an advance selling environment in continuous time," European Journal of Operational Research, Elsevier, vol. 203(2), pages 505-512, June.
    8. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    9. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    10. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    11. Masoud Hekmatfar & M. R. M. Aliha & Mir Saman Pishvaee & Tomasz Sadowski, 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    12. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    13. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    14. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    15. Ji, Ling & Huang, Guo-He & Huang, Lu-Cheng & Xie, Yu-Lei & Niu, Dong-Xiao, 2016. "Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty," Energy, Elsevier, vol. 109(C), pages 920-932.
    16. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    17. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    18. Zahra Homayouni & Mir Saman Pishvaee & Hamed Jahani & Dmitry Ivanov, 2023. "A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 395-435, May.
    19. Lida Safari & Seyed Jafar Sadjadi & Farzad Movahedi Sobhani, 2024. "Resilient and sustainable supply chain design and planning under supply disruption risk using a multi-objective scenario-based robust optimization model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27485-27527, November.
    20. Qiang Fu & Tianxiao Li & Song Cui & Dong Liu & Xueping Lu, 2018. "Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1261-1274, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:182:y:2007:i:3:p:971-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.