IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v180y2007i3p971-982.html
   My bibliography  Save this article

On optimality and duality theorems of nonlinear disjunctive fractional minmax programs

Author

Listed:
  • Ammar, E.E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ammar, E.E., 2007. "On optimality and duality theorems of nonlinear disjunctive fractional minmax programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 971-982, August.
  • Handle: RePEc:eee:ejores:v:180:y:2007:i:3:p:971-982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00895-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siegfried Schaible, 1976. "Fractional Programming. I, Duality," Management Science, INFORMS, vol. 22(8), pages 858-867, April.
    2. Patkar, Vivek & Stancu-Minasian, I. M., 1985. "Duality in disjunctive linear fractional programming," European Journal of Operational Research, Elsevier, vol. 21(1), pages 101-105, July.
    3. Singh, Sanjeet & Gupta, Pankaj & Bhatia, Davinder, 2005. "Multiparametric sensitivity analysis in programming problem with linear-plus-linear fractional objective function," European Journal of Operational Research, Elsevier, vol. 160(1), pages 232-241, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Hongwei & Li, Binbin, 2022. "Solving min–max linear fractional programs based on image space branch-and-bound scheme," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    2. Xiaojun Lei & Zhian Liang, 2008. "Study on the Duality between MFP and ACP," Modern Applied Science, Canadian Center of Science and Education, vol. 2(6), pages 1-81, November.
    3. C. Singh & M.A. Hanson, 1991. "Multiobjective fractional programming duality theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 925-933, December.
    4. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    6. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
    8. Castrodeza, Carmen & Lara, Pablo & Pena, Teresa, 2005. "Multicriteria fractional model for feed formulation: economic, nutritional and environmental criteria," Agricultural Systems, Elsevier, vol. 86(1), pages 76-96, October.
    9. Husain, I. & Hanson, Morgan A. & Jabeen, Z., 2005. "On nondifferentiable fractional minimax programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 202-217, January.
    10. T Peña & P Lara & C Castrodeza, 2009. "Multiobjective stochastic programming for feed formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1738-1748, December.
    11. X. L. Sun & H. Z. Luo & D. Li, 2007. "Convexification of Nonsmooth Monotone Functions1," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 339-351, February.
    12. Lara, P. & Stancu-Minasian, I., 1999. "Fractional programming: a tool for the assessment of sustainability," Agricultural Systems, Elsevier, vol. 62(2), pages 131-141, November.
    13. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    14. Oleksii Ursulenko & Sergiy Butenko & Oleg Prokopyev, 2013. "A global optimization algorithm for solving the minimum multiple ratio spanning tree problem," Journal of Global Optimization, Springer, vol. 56(3), pages 1029-1043, July.
    15. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:180:y:2007:i:3:p:971-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.