IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v177y2007i1p623-625.html
   My bibliography  Save this article

Some remarks on the decomposition properties of the single machine total tardiness problem

Author

Listed:
  • Szwarc, Wlodzimierz

Abstract

No abstract is available for this item.

Suggested Citation

  • Szwarc, Wlodzimierz, 2007. "Some remarks on the decomposition properties of the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 177(1), pages 623-625, February.
  • Handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:623-625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00898-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton Emmons, 1969. "One-Machine Sequencing to Minimize Certain Functions of Job Tardiness," Operations Research, INFORMS, vol. 17(4), pages 701-715, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koulamas, Christos, 2009. "A faster fully polynomial approximation scheme for the single-machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 637-638, March.
    2. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    2. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    3. Rubing Chen & Jinjiang Yuan, 2019. "Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines," Journal of Scheduling, Springer, vol. 22(5), pages 595-601, October.
    4. S-O Shim & Y-D Kim, 2007. "Minimizing total tardiness in an unrelated parallel-machine scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 346-354, March.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    7. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.
    8. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    9. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
    10. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    11. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
    12. Tian, Z. J. & Ng, C. T. & Cheng, T. C. E., 2005. "On the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 843-846, September.
    13. Koulamas, Christos, 2020. "The proportionate flow shop total tardiness problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 439-444.
    14. Herr, Oliver & Goel, Asvin, 2016. "Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints," European Journal of Operational Research, Elsevier, vol. 248(1), pages 123-135.
    15. Somaye Geramipour & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2017. "Maximizing the profit in customer’s order acceptance and scheduling problem with weighted tardiness penalty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 89-101, January.
    16. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
    17. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    18. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    19. Baptiste, Philippe & Carlier, Jacques & Jouglet, Antoine, 2004. "A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates," European Journal of Operational Research, Elsevier, vol. 158(3), pages 595-608, November.
    20. Naidu, Jaideep T., 2003. "A note on a well-known dispatching rule to minimize total tardiness," Omega, Elsevier, vol. 31(2), pages 137-140, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:623-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.