IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v174y2006i3p1968-1978.html
   My bibliography  Save this article

Tree knapsack approaches for local access network design

Author

Listed:
  • van der Merwe, D.J.
  • Hattingh, J.M.

Abstract

No abstract is available for this item.

Suggested Citation

  • van der Merwe, D.J. & Hattingh, J.M., 2006. "Tree knapsack approaches for local access network design," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1968-1978, November.
  • Handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1968-1978
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00427-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. S. Johnson & K. A. Niemi, 1983. "On Knapsacks, Partitions, and a New Dynamic Programming Technique for Trees," Mathematics of Operations Research, INFORMS, vol. 8(1), pages 1-14, February.
    2. Geon Cho & Dong X. Shaw, 1997. "A Depth-First Dynamic Programming Algorithm for the Tree Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 431-438, November.
    3. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liang & Xu, Zhou & Xu, Dongsheng, 2013. "Exact and approximation algorithms for the min–max k-traveling salesmen problem on a tree," European Journal of Operational Research, Elsevier, vol. 227(2), pages 284-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Samphaiboon & Y. Yamada, 2000. "Heuristic and Exact Algorithms for the Precedence-Constrained Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 659-676, June.
    2. You, Byungjun & Yamada, Takeo, 2007. "A pegging approach to the precedence-constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 618-632, December.
    3. Laurent Gourvès & Jérôme Monnot & Lydia Tlilane, 2018. "Subset sum problems with digraph constraints," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 937-964, October.
    4. Genserik L. L. Reniers & Kenneth Sörensen, 2013. "An Approach for Optimal Allocation of Safety Resources: Using the Knapsack Problem to Take Aggregated Cost‐Efficient Preventive Measures," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2056-2067, November.
    5. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    6. Büther, Marcel & Briskorn, Dirk, 2007. "Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 629, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Sofie Coene & Frits C. R. Spieksma & Gerhard J. Woeginger, 2011. "Charlemagne's Challenge: The Periodic Latency Problem," Operations Research, INFORMS, vol. 59(3), pages 674-683, June.
    8. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
    9. R. Pablo Arribillaga & G. Bergantiños, 2022. "Cooperative and axiomatic approaches to the knapsack allocation problem," Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.
    10. van de Leensel, R.L.J.M. & Flippo, O.E. & Koster, Arie M.C.A. & Kolen, A.W.J., 1996. "A dynamic programming algorithm for the local access network expansion problem," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Ibrahim Kamel & Beizhong Chen, 2009. "A novel memory management scheme for residential gateways," Information Systems Frontiers, Springer, vol. 11(5), pages 491-500, November.
    12. Stefan Hajkowicz & Andrew Higgins & Kristen Williams & Daniel P. Faith & Michael Burton, 2007. "Optimisation and the selection of conservation contracts," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(1), pages 39-56, March.
    13. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    14. Joonyup Eun & Chang Sup Sung & Eun-Seok Kim, 2017. "Maximizing total job value on a single machine with job selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 998-1005, September.
    15. Kameshwaran, S. & Narahari, Y. & Rosa, Charles H. & Kulkarni, Devadatta M. & Tew, Jeffrey D., 2007. "Multiattribute electronic procurement using goal programming," European Journal of Operational Research, Elsevier, vol. 179(2), pages 518-536, June.
    16. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    17. Frank Gurski & Dominique Komander & Carolin Rehs, 2020. "Solutions for subset sum problems with special digraph constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 401-433, October.
    18. Furini, Fabio & Ljubić, Ivana & Sinnl, Markus, 2017. "An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 262(2), pages 438-448.
    19. Zhenbo Wang & Wenxun Xing, 2009. "A successive approximation algorithm for the multiple knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 17(4), pages 347-366, May.
    20. Syam Menon & Ali Amiri, 2004. "Scheduling Banner Advertisements on the Web," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 95-105, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1968-1978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.