IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v160y2005i2p576-578.html
   My bibliography  Save this article

A note on exact algorithms for the identical parallel machine scheduling problem

Author

Listed:
  • Dell'Amico, Mauro
  • Martello, Silvano

Abstract

No abstract is available for this item.

Suggested Citation

  • Dell'Amico, Mauro & Martello, Silvano, 2005. "A note on exact algorithms for the identical parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 160(2), pages 576-578, January.
  • Handle: RePEc:eee:ejores:v:160:y:2005:i:2:p:576-578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00339-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauro Dell’Amico & Silvano Martello, 1995. "Optimal Scheduling of Tasks on Identical Parallel Processors," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 191-200, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    2. Kris Boudt & Edgars Jakobsons & Steven Vanduffel, 2018. "Block rearranging elements within matrix columns to minimize the variability of the row sums," 4OR, Springer, vol. 16(1), pages 31-50, March.
    3. Mauro Dell'Amico & Manuel Iori & Silvano Martello & Michele Monaci, 2008. "Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 333-344, August.
    4. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    2. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    3. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    4. Johnny C. Ho & Ivar Massabò & Giuseppe Paletta & Alex J. Ruiz-Torres, 2019. "A note on posterior tight worst-case bounds for longest processing time schedules," 4OR, Springer, vol. 17(1), pages 97-107, March.
    5. Antonio Frangioni & Emiliano Necciari & Maria Grazia Scutellà, 2004. "A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 195-220, June.
    6. Bassem Jarboui & Saber Ibrahim & Abdelwaheb Rebai, 2010. "A new destructive bounding scheme for the bin packing problem," Annals of Operations Research, Springer, vol. 179(1), pages 187-202, September.
    7. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    8. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    9. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    10. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    11. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    12. Rico Walter & Martin Wirth & Alexander Lawrinenko, 2017. "Improved approaches to the exact solution of the machine covering problem," Journal of Scheduling, Springer, vol. 20(2), pages 147-164, April.
    13. Clausen, Tommy & Hjorth, Allan Nordlunde & Nielsen, Morten & Pisinger, David, 2010. "The off-line group seat reservation problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1244-1253, December.
    14. Dell'Amico, Mauro & Iori, Manuel & Martello, Silvano & Monaci, Michele, 2006. "Lower bounds and heuristic algorithms for the ki-partitioning problem," European Journal of Operational Research, Elsevier, vol. 171(3), pages 725-742, June.
    15. Alexander Lawrinenko & Stefan Schwerdfeger & Rico Walter, 2018. "Reduction criteria, upper bounds, and a dynamic programming based heuristic for the max–min $$k_i$$ k i -partitioning problem," Journal of Heuristics, Springer, vol. 24(2), pages 173-203, April.
    16. Kris Boudt & Edgars Jakobsons & Steven Vanduffel, 2018. "Block rearranging elements within matrix columns to minimize the variability of the row sums," 4OR, Springer, vol. 16(1), pages 31-50, March.
    17. Mauro Dell'Amico & Silvano Martello, 1999. "Reduction of the Three-Partition Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 17-30, July.
    18. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    19. Michael Brusco & Hans Köhn & Douglas Steinley, 2013. "Exact and approximate methods for a one-dimensional minimax bin-packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 611-626, July.
    20. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:160:y:2005:i:2:p:576-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.