IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v44y1998i3p388-399.html
   My bibliography  Save this article

Exact Solution of the Two-Dimensional Finite Bin Packing Problem

Author

Listed:
  • Silvano Martello

    (Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Bologna, Italy)

  • Daniele Vigo

    (Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Bologna, Italy)

Abstract

Given a set of rectangular pieces to be cut from an unlimited number of standardized stock pieces (bins), the Two-Dimensional Finite Bin Packing Problem is to determine the minimum number of stock pieces that provide all the pieces. The problem is NP-hard in the strong sense and finds many practical applications in the cutting and packing area. We analyze a well-known lower bound and determine its worst-case performance. We propose new lower bounds which are used within a branch-and-bound algorithm for the exact solution of the problem. Extensive computational testing on problem instances from the literature involving up to 120 pieces shows the effectiveness of the proposed approach.

Suggested Citation

  • Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:3:p:388-399
    DOI: 10.1287/mnsc.44.3.388
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.3.388
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.3.388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Frenk, J.B.G. & Galambos, G., 1987. "Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem," Econometric Institute Research Papers 11691, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    4. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    5. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    6. Mauro Dell’Amico & Silvano Martello, 1995. "Optimal Scheduling of Tasks on Identical Parallel Processors," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 191-200, May.
    7. Coffman, E. G. & Shor, P. W., 1990. "Average-case analysis of cutting and packing in two dimensions," European Journal of Operational Research, Elsevier, vol. 44(2), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    2. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    3. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    4. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    5. Lodi, Andrea & Martello, Silvano & Vigo, Daniele, 1999. "Approximation algorithms for the oriented two-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 112(1), pages 158-166, January.
    6. L Lins & S Lins & R Morabito, 2003. "An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 777-789, July.
    7. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    8. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    9. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    10. Arenales, Marcos & Morabito, Reinaldo, 1995. "An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 599-617, August.
    11. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    12. Michele Monaci & Paolo Toth, 2006. "A Set-Covering-Based Heuristic Approach for Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 71-85, February.
    13. Hifi, M. & Zissimopoulos, V., 1996. "A recursive exact algorithm for weighted two-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 91(3), pages 553-564, June.
    14. Ben Messaoud, Said & Chu, Chengbin & Espinouse, Marie-Laure, 2008. "Characterization and modelling of guillotine constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 112-126, November.
    15. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    16. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    17. R Alvarez-Valdes & F Parreño & J M Tamarit, 2005. "A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 414-425, April.
    18. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    19. Sándor P. Fekete & Jörg Schepers, 2004. "A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 353-368, May.
    20. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:3:p:388-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.