IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v179y2010i1p187-20210.1007-s10479-008-0459-2.html
   My bibliography  Save this article

A new destructive bounding scheme for the bin packing problem

Author

Listed:
  • Bassem Jarboui
  • Saber Ibrahim
  • Abdelwaheb Rebai

Abstract

In this paper, we present a new lower bounding scheme for the one-dimensional bin packing problem based on a destructive approach and we prove its effectiveness to solve hard instances. Performance comparison to other available lower bounds shows the effectiveness of our proposed lower bounds. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • Bassem Jarboui & Saber Ibrahim & Abdelwaheb Rebai, 2010. "A new destructive bounding scheme for the bin packing problem," Annals of Operations Research, Springer, vol. 179(1), pages 187-202, September.
  • Handle: RePEc:spr:annopr:v:179:y:2010:i:1:p:187-202:10.1007/s10479-008-0459-2
    DOI: 10.1007/s10479-008-0459-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0459-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0459-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauro Dell’Amico & Silvano Martello, 1995. "Optimal Scheduling of Tasks on Identical Parallel Processors," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 191-200, May.
    2. Crainic, Teodor Gabriel & Perboli, Guido & Pezzuto, Miriam & Tadei, Roberto, 2007. "Computing the asymptotic worst-case of bin packing lower bounds," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1295-1303, December.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. Elhedhli, Samir, 2005. "Ranking lower bounds for the bin-packing problem," European Journal of Operational Research, Elsevier, vol. 160(1), pages 34-46, January.
    5. Scholl, Armin & Klein, Robert & Jürgens, Christian, 1996. "BISON : a fast hybrid procedure for exactly solving the one-dimensional bin packing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 49135, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Martine Labbé & Gilbert Laporte & Hélène Mercure, 1991. "Capacitated Vehicle Routing on Trees," Operations Research, INFORMS, vol. 39(4), pages 616-622, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Chung-Shou & Hsu, Chia-Hong, 2013. "New lower bounds for the three-dimensional orthogonal bin packing problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 244-252.
    2. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    3. Husseinzadeh Kashan, Ali & Ozturk, Onur, 2022. "Improved MILP formulation equipped with valid inequalities for scheduling a batch processing machine with non-identical job sizes," Omega, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    2. Braune, Roland, 2019. "Lower bounds for a bin packing problem with linear usage cost," European Journal of Operational Research, Elsevier, vol. 274(1), pages 49-64.
    3. Liao, Chung-Shou & Hsu, Chia-Hong, 2013. "New lower bounds for the three-dimensional orthogonal bin packing problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 244-252.
    4. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    5. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    6. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    7. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    8. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    9. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    10. Johnny C. Ho & Ivar Massabò & Giuseppe Paletta & Alex J. Ruiz-Torres, 2019. "A note on posterior tight worst-case bounds for longest processing time schedules," 4OR, Springer, vol. 17(1), pages 97-107, March.
    11. Antonio Frangioni & Emiliano Necciari & Maria Grazia Scutellà, 2004. "A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 195-220, June.
    12. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    13. Roland Braune, 2022. "Packing-based branch-and-bound for discrete malleable task scheduling," Journal of Scheduling, Springer, vol. 25(6), pages 675-704, December.
    14. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    15. Rico Walter & Martin Wirth & Alexander Lawrinenko, 2017. "Improved approaches to the exact solution of the machine covering problem," Journal of Scheduling, Springer, vol. 20(2), pages 147-164, April.
    16. Alexander Lawrinenko & Stefan Schwerdfeger & Rico Walter, 2018. "Reduction criteria, upper bounds, and a dynamic programming based heuristic for the max–min $$k_i$$ k i -partitioning problem," Journal of Heuristics, Springer, vol. 24(2), pages 173-203, April.
    17. Kris Boudt & Edgars Jakobsons & Steven Vanduffel, 2018. "Block rearranging elements within matrix columns to minimize the variability of the row sums," 4OR, Springer, vol. 16(1), pages 31-50, March.
    18. Mauro Dell'Amico & Silvano Martello, 1999. "Reduction of the Three-Partition Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 17-30, July.
    19. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    20. Michael Brusco & Hans Köhn & Douglas Steinley, 2013. "Exact and approximate methods for a one-dimensional minimax bin-packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 611-626, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:179:y:2010:i:1:p:187-202:10.1007/s10479-008-0459-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.